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Gol den, ,Ji, and n F l owers : A Sp i ra l  Story 

MICHAEL NAY LOR 
Western Washington University 

Bellingham, WA 98226 
mnaylor@cc.wwu.edu 

Fibonacci numbers and the golden ratio are ubiquitous in nature. The number 
(1 + ,JS) /2 seems an unlikely candidate for what is arguably the most important 
ratio in the natural world, yet it possesses a subtle power that drives the arrangements 
of leaves, seeds, and spirals in many plants from vastly different origins. This story is 
something like these spirals, twisting and turning in one direction and then another, 
crisscrossing themes and ideas over and over again. We begin with a mathematical 
model for making these spirals .  Many spirals in nature use the golden ratio, but some
thing beautiful happens when we replace that ratio with some other famous irrational 
numbers. Another twist takes us to rational approximations and continued fractions . 
Let us follow these spirals into the beautiful world of irrational numbers. 

Seed spirals 

When a plant such as a sunflower grows, it produces seeds at the center of the flower 
and these push the other seeds outward. Each seed settles into a location that turns 
out to have a specific constant angle of rotation relative to the previous seed. It is this 
rotating seed placement that creates the spiraling patterns in the seed pod [7, p. 1 76]. 

These spirals can be very neatly simulated as follows:  Let's say there are k seeds in 
the arrangement, and call the most recent seed 1, the previous seed 2, and so on, so that 
the farthest seed from the center is seed number k. As an approximation, if each seed 
has an area of 1 ,  then the area of the circular face is k, and the radius is v'k;rr. The 
distance from the center of the flower to each seed, then, should vary proportionally to 
the square root of its seed number. If we call the angle a, since the angle between any 
two seeds is constant, the angle of seed k is simply ka. We now have a simple way to 
describe the location of any seed with polar coordinates: r = -/k, e = ka. 

Center oo line <>:.<···········································• Center oo line !················································• 

distance = 1 ·a ____ _ 

-, 
distance = ..f2 l 0 

9 
• 

Center oo line _..£>················································• 

distance = v�_./ 0 

___ .J:J· 0 

�--
Figure 1 Growing a seed sp i ra l  
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F igure 3 The fi rst 1 00 seeds 

Here's  an example of a spiral formed with an angle a =  45° , or 1 /8 of a complete 
rotation. Seed 1 is located at a distance of Jl and an angle of 45o (clockwise, in this 
example). The next seed is located 45° from this seed, or 2 * 45o = 90° from the zero 
line; its distance is v'l. Seed 3 is located at 3 * 45o at a distance of .J3. 

Continuing in this manner, the eighth seed falls on the oo line, the ninth seed is on 
the same line as seed 1 ,  and so on (see FIGURE 2). FIGURE 3 shows what the spiral 
looks like with 100 seeds. It's  easy to see the spiral near the center, but the pattern gets 
lost farther out as the eight radial arms become prominent. Notice how close together 
the seeds become, and how much space there is between rows of seeds; this is not a 
very even distribution of seeds. We can get a better distribution of seeds by choosing 
an angle that keeps the seeds from lining up so readily. If we try an angle of 0. 15  
revolutions (or 54°), the result i s  better, especially for the first few dozen seeds, but 
again we end up with radial arms, 20 this time (see FIGURE 4). Since 0. 1 5  = 3/20, 
the 20th seed will be rotated 20 * 3/20 rotations, or 3 complete rotations to bring it to 
the oo line. An angle of 0.48 results in 25 radial arms (see FIGURE 5), since the 25th 
seed will be positioned at an angle of 25 * 0.48 rotations, or 12  complete rotations, and 
the cycle begins anew. 

�\\I� •• • •• •• •• 
-----·· ··> • • ··-----

Figu re 4 angle= 0.15 
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F igu re 5 angle  = 0.48 
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Clearly, if the angle is any rational fraction of one revolution, say ajb, seed b will 

fall on the oa line, since the angle ab 1 b is an integral number of complete rotations. 
Therefore the pattern will repeat, radial arms will be formed, and the distribution be far 
from ideal. The best choice then, would be an irrational angle-we are then guaranteed 
that no seed will fall on the same line as any other seed. 

Golden flowers 

The irrational angle most often observed in plants is the golden ratio, ¢ = (1 + .J5) /2, 
or approximately 1 .6 1 8 .  This angle drives the placement of leaves, stalks, and seeds 
in pine cones, sunflowers, artichokes, celery, hawthorns, lilies, daisies, and many, 
many other plants [5, pp. 155-66; 2, pp. 90--105; 1, pp. 8 1 -1 13 ] .  With this angle of 
rotation, each seed is rotated approximately 1 .6 1 8  revolutions from the previous 
seed-which is the same as 0.6 1 8  revolutions, or about 6 1 .8% of a complete tum 
(approximately 222S). For our purposes, only the fractional part of the angle is 
significant and the whole number portion can be ignored. FIGURE 6 shows 1000 
simulated seeds plotted with this angle of rotation, an arrangement we will call a 
golden flower. Notice how well distributed the seeds appear; there is no clumping 
of seeds and very little wasted space. Even though the pattern grows quite large, the 
distances between neighboring seeds appear to stay nearly constant. In the natural 
world, many plants grow their seeds (or stalks or leaves or thorns) simply where there 
is the most room [5, p. 1 6 1 ] .  The resulting golden flower is the most even distribution 
possible [1 ,  pp. 84-88 ;  6, pp. 96-99] . (For an excellent discussion of the mechanics 
of the placement of seeds in a growing plant apex and the inevitability of these golden 
arrangements, see Mitchison [3, pp. 270-75] .)  
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Figure 6 1 000 seeds i n  a go lden flower 

Notice also the many different spiral arms. Spiral arms seem to fall into certain fam
ilies. In this pattern above, you can see how a group of spirals twist in one direction, 
only to be taken over by another group of spirals twisting in the opposite direction. 
The interesting properties of spiral families form the heart of our discussion. 

FIGURE 7 shows three families of spirals in the golden spiral. Each set of 300 seeds 
pictured is identical, but different spirals arms have been drawn on each set. The first 
set shown consists of 8 spiral arms, the second has 13 ,  and the third 21-all Fibonacci 
numbers. You may be able to see other spirals not shown in these images, and the size 
of these groups are Fibonacci numbers as well . 
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Figure 7 Sp i ra l  fam i l ies 8, 1 3 , and 21  

To understand why spirals on a golden flower appear in  groups whose size are Fi
bonacci numbers, it helps to consider placement of individually numbered seeds. In 
FIGURE 8, the first 144 seeds are numbered and the Fibonacci numbers are enclosed 
in rectangles. The baseline at oo has also been added. 
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Figure 8 F ibonacci seeds 

The Fibonacci numbered seeds converge on the oo line, alternating above and below, 
just as the ratios of pairs of consecutive Fibonacci numbers converge to ¢, alternately 
greater and less than ¢ .  A seed that is numbered with a Fibonacci number will fall close 
to the zero degree line, since its angle (a Fibonacci number times ¢) is approximately 
an integer. For example, since 55/34 is approximately ¢, seed 34 will be located at an 
angle of about 34 * (55/34), or very nearly 55 complete rotations (actually'"" 55 .013  
rotations, a slight over-rotation). The larger the Fibonacci numbers involved, the closer 
their ratio is to ¢ and therefore the closer the seeds lie to the zero degree line. 

It is for this reason that seeds in each spiral arm in a golden flower differ by mul
tiples of a Fibonacci number. For example, seed 34 is slightly over-rotated past the 
oo line, seed 68 is rotated by the same angle from seed 34, as are seeds 1 02, 1 36, 
1 70, and every other multiple of 34. These seeds form one spiral arm in family 34. 
Another arm in this family is 1, 35,  69, 103 . . .  , and another is 2, 36, 70, 104, . . .  , etc . 
Members of an arm in family 34 are seeds with numbers 34m + n ,  where m and n are 
nonnegative integers and n is constant for that arm. Trace any spiral arm in the golden 
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flower and you will find that its seed numbers are in arithmetic progression, since all 
share a common difference-a Fibonacci number. 

n flowers 

Why should the golden ratio be the preferred irrational number in nature? Shouldn't  
any irrational number work just as  well? Let's  take a look at  a simulated seed pod gen
erated with an angle of rr rotations, or rr * 360° . This angle is ,..._, 3 . 14159 revolutions, 
which is the same as,..._, 0. 14159 revolutions, or,..._, 50.97° . FIGURE 9 shows the first 
500 seeds-not a very even distribution at all ! Seven spiral arms dominate the pattern 
with no new spirals apparent. With 10,000 seeds (FIGURE 10), a new set of spirals be
come visible, 1 1 3 arms in this family with so little curvature that the next set of spirals 
doesn't  show until about a million seeds have been grown. 
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Figu re 9 500 seeds, ang le = rr Figu re 1 0 1 0,000 seeds, ang le  = rr 

Why should there be 7 spiral arms so prominently displayed in the center, and 1 1 3 
arms in the next set of spirals? Perhaps you recognize these numbers as denominators 
in well-known rational approximations of rr. An excellent approximation of rr is 22/7. 
The decimal expansion of 1 /7 is 0. 142857 . . .  and the angle of rotation in a rr flower is 
0. 14159 . . .  -a close match ! Another great approximation of rr is 355/ 1 1 3 ,  accurate 
to 6 decimal places, and for this reason the next set of spirals has 1 1 3 arms. 

The gap between these spiral families (7 and 1 1 3) in a rr flower is huge compared 
to that of a golden flower. No other sets of spirals are apparent between family 7 and 
family 1 1 3--does this mean that there are no better rational approximations of rr with 
denominators between 7 and 1 1 3 ?  Plotting and numbering the seeds in a rr flower 
suggests an answer. In FIGURE 1 1 , seed 7 in the first spiral arm falls near the oo line 
as expected, as does seed 1 1 3 .  Since seed 1 1 3 is part of the second spiral arm to cross 
this line, there is no seed less than 1 1 3 that lies closer to the oo line than seed 7, and 
thus there is no better rational approximation of rr than 22/7 with a denominator less 
than 1 1 3 .  The approximation 355/ 1 1 3 is so accurate that the spirals in family 1 1 3 
have very little curvature and their members dominate the oo line for generations. The 
nearest seed in the third arm to cross is seed 226-part of the same arm as seed 1 1 3 .  In 
fact, we need to check tens of thousands of seeds before we find one that falls closer 
to the oo line than any multiple of 1 1 3-a topic we will visit again later. 
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Figure 11 A numbered rr flower 

An angle of rotation of ./2 produces a very even distribution of seeds, rivaling that of 
the golden ratio. Five hundred seeds are shown in FIGURE 1 2; families of spirals are 
again readily apparent in this arrangement. A study of these ./2 spirals is worthwhile, 
as their structure illuminates many properties of algebraic numbers and seed spirals in 
general. 
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Figure 12 A root-two spira l 

FIGURE 1 3  shows the results of a brute-force analysis-the first 1 2  families of 
spirals in a ./2 spiral. Family 1 is made by connecting the seeds in order, family 2 is 
made by connecting seeds whose numbers differ by 2, family 3 by connecting seeds 
whose numbers differ by 3, etc . Study these spiral families for a moment. Notice that 



VOL.  75, NO. 3 ,  J U N E  2002 169 

4 

7 

10 

2 

5 

8 

11 

3 

6 

9 
. .  · . 

. . . . .. . . . . . . .. . . . . . . . . . . . . . . 
. . : ..... · 

.
. 

· .

.

. .  . 

' 
· . .

......
.

. . . .

. . 

. 
• 

• 
• • • • • • • • • •• ••• . . ... . . . . .

.
. . " .. . . . . . .. . . . . ' .. . . . . . . . . . '. ' . . . . . . .  _.. . . .

. .  . • • • • • • • • • • • . . . . . 
·

. 
·

. 

· .. 
· 

. .
. . . 

. . . • . . 

. 

. . • . . : ! 
. . . . . . . .  . . . . . . . . . . .  

12 
Figure 13 Spiral  fami lies 1 -1 2  of a ,J2 spiral  
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Figure 14 Selected fam i l ies of the ../2 sp i ra l  
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some of the families produce very clean spiral arms, while others do not appear to be 
spirals at all, crossing themselves in a star-like or even scribble-like pattern. 

Families 2 and 3 start well but quickly die, that is, they cross themselves after a 
small number of iterations . Families 5 and 7 are smooth. Family 10  looks like smooth 
spirals, but on closer examination it is seen that it crosses itself immediately-since 
10 is a multiple of 5, this is the same as family 5 but with alternate seeds on the arms 
connected. Family 1 2  has the best looking spirals among the first 12 .  

The numbers of  the families that produce nice spirals look suspicious: 2 ,  3 ,  5 ,  7 ,  
1 2  . . .  could there be a Fibonacci-like relationship between spiral families in a J2 spi
ral as well? More spiral families are shown in FIGURE 14, but the next spiral family af
ter 1 2  is not 1 9  as we might expect by adding 7 and 1 2, but rather 17 ,  and the next fam
ily better than 1 7  is 29. The sequence is in fact: 1 ,  2, 3 ,  5 ,  7 ,  12 ,  1 7 ,  29, 4 1 , 70, 99 , . . .  
Before reading further, can you find the pattern in this sequence and extend it? 
The numbers in this sequence are the numbers in the Columns of Pythagoras. The 
Columns of Pythagoras are a pair of columns of integers. The top entry in each col
umn is 1 .  Given a row with numbers A and B in that order, the next row is generated 
by summing A and B and writing this number, C, in the first column underneath A, 
then summing A and C and writing i t  in  the second column underneath B .  This pro
cess generates all of the spiral families of the J2 flower (see FIGURE 1 5). Further, the 
ratio of the numbers in each row converges to J2: 1 / 1  = 1 ,  3/2 = 1 .5 ,  7/5 = 1 .4, 
17/ 12  = 1 .4 1 666 . . .  , 4 1 /29 = 1 .4 1 379 . . .  , etc . 

Continued fractions 

Let us follow one more twist on this spiraling journey. The golden ratio may be written 
as the following continued fraction: 
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Figure 15 The Co l umns  of Pythagoras 

1 + � 1 
--- = 1 + ----,---

2 1 + -1 -t+rf.:: 

17 1 

This result is easily verified by setting the continued fraction equal to some variable, 
say x, and then recognizing that x is repeated in the denominator of the fractional part, 
that is, x = 1 + 1 I x. This expresses the continued fraction perfectly as one root of an 
easily evaluated quadratic .  

Partial evaluations of this continued fraction, called convergents, result in ratios of 
Fibonacci numbers, that is, 

1 5 
1 + --1 = - , 

1 + I 3 
1 8 

1 + 
1 + -1- = 5' 

t+t 

1 
1 + I 1 + --1+-1-

1+ t 

1 3  
8 

The reader may enjoy checking that the following continued fraction gives an expres
sion for ../2: 

1 v'2 = 1 + I . 
2 + --2+-J::: 

Partial evaluations of this continued fraction yield the following ratios : 

1 3 1 7 
1 + - = - 1 + -- = -

2 2 2 + � 5 ' 
1 17  

1 + 
2 -1-

= 
12 ' + 2+! 

1 4 1  
1 +  I -2 + 2+ I 29 

2+ ! 
These are the same numbers in the Columns of Pythagoras and the same ratios found 
in the ../2 flower! 

Let us examine the continued fraction for the other irrational number we have used 
to build flowers, JT. The continued fraction begins 3 + 1 /7 . . . and the values of num
bers leading the expressions under the denominators at each level, starting with the 7, 
are: 7 ,  15, 1 ,  292, 1 ,  1 , 1 , 2,  1 , 3 ,  1 ,  14 , . . . .  

Looking at the partial evaluations yields rational approximations to JT that reflect 
the number of spiral arms in the JT flower: 
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1 1 1 5  333 
1'( = 3 + -7 -+---/ 5 = 3 + -\0-56 = 3 + -

10
-
6 

= -
10

-
6 ' 

1 1 1 1 6  355 
1'( = 3 + _7_ +_-:- 1- = 3 + 

7 + ...!.. 3 + 113 = 3 + 
1 1 3 

= 
1 1 3

. 
15+t 16 16 

Remember the 1 1 3 arms in the rr spiral? It would take a lot of seeds to begin to find 
the next series of spirals-the next partial evaluation explains why: 

1 1 
3 

1 - 3 
4687 - 103993 

1'( = 3 + -7-+-----:-1- = 3 + I = + 293 - + 
33 102 

-
33 102 15+ l 

7 + 15+292 7 + 4687 I+� m 

The next family of spirals past family 1 1 3 is family 33 102. We would need 33 , 102 
seeds just to get one seed in each spiral arm ! If we plot about a million seeds we 
may be able to starting seeing these spirals;  however, there would be nearly 92 
spirals packed into each degree arc of the circular face. An illustration 10 em in 
diameter would have over 1000 spiral arms in each em of the circumference-the 
illustration would appear to be nothing other than a black circle ! (Note that 333/ 106 is 
also an approximation of rr. However, due to the closeness of a better approximation, 
355/ 1 1 3 ,  the set of 106 spiral arms is immediately obscured by the set of 1 1 3 spiral 
arms.) 

The continued fraction expansion for the golden ratio uses the smallest possible 
numbers in the expansion, namely 1 s .  Therefore, it converges to a rational number the 
least quickly. In this sense, the golden ratio is the most irrational number and therefore 
gives the best possible distribution [6, pp. 96--99] . 

More... Given that seed spirals are easily plotted using polar coordinates, you 
may wish to create your own irrational flowers using mathematics software. Software 
(Mac OS) used to create many of the images seen here is also available to download 
for free from the author's web page at http://www.wwu.edu/"-'mnaylor. 
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In cylindrical chess, one plays on a regular chessboard with the pieces in their standard 
positions, but imagines that the left and right edges of the board are identified. So, for 
example, when a rook travels horizontally off the right-hand edge, it reappears in the 
same row on the left -hand side of the board. It is easy to make a cylindrical chessboard 
out of paper, by taping together the left- and right-hand edges. However, to avoid 
the pieces falling off, the simplest way to play cylindrical chess is to use the regular 
(flat) chessboard and just remember the edge identification. Like 3-dimensional chess, 
cylindrical chess is well over 100 years old. According to Pritchard [59] it dates to the 
early eighteenth century. Byzantine or Round chess is played on a cylindrical 4 x 1 6  
board, and i s  possibly a thousand years old [59, 77, 53] .  

I n  chess o n  a torus, one identifies the left and right edges and also the top and bottom 
edges, as in FIGURE 1 a. These identifications really do produce the torus; the left and 
right edge identification gives a cylinder, and the top and bottom edge identification 
amounts to connecting up the ends of the cylinder (see Barr [3] or Stillwell [70] for 
drawings of this construction). Once again, for playing toroidal chess, it is to best to 
use the regular chessboard and just remember the edge identifications . The origins of 
toroidal chess are not clear, but it goes back at least as far as P6lya's 1 9 1 8  paper [57] . 

One can also play chess on the Klein bottle ; the situation is similar to the torus, 
but the horizontal edge identifications involve a reflection (FIGURE 1b) :  as a rook 
travels up from h8, it reappears in a1 . For games on the Klein bottle, there are even 
stronger reasons to use the regular chessboard; the Klein bottle can't be constructed in 
3-dimensional Euclidean space without self-intersections [3] . 

The projective plane is another surface that is commonly represented by a square 
with edge identifications, as in FIGURE 1c .  The projective plane is the space of straight 
lines through the origin in 3-dimensional Euclidean space. It can be obtained from 
the sphere by identifying antipodal points. Like the Klein bottle, it is not orientable 
and can't  be realized in 3-dimensional Euclidean space without self-intersections.  See 
Barr [3] , Stillwell [70] or Prasolov [58] for more information about representing sur
faces. An alternative projective chess is obtained from the traditional board by adding 
squares at infinity [56, Chapter 6. 1 6] .  This is also called projected chess [59] . 

The "fairy chess" games of FIGURE 1 are easy to understand; conceptually they are 
really only a small variation on traditional chess since after all, the usual board can be 

Figure 1 a Torus Figure 1 b K lein  bott le Figure 1 c Projective p l ane 
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thought of as being composed of 64 squares, with rules that tell you how the squares are 
connected up. The game is quite different in practice; for starters, one wouldn't  want 
to commence one of these chess games with the pieces in their traditional positions, 
since the kings would begin on adjacent squares ! Pritchard [59] gives various possible 
starting positions on the torus. Also, on the Klein bottle and the projective plane, one 
doesn't  have the usual black-white pattern; the black square al is immediately above 
the black square h8. We could fix this if we were willing to use a 9 x 8 board, for 
example. 

The pi I low board 

In this paper, we introduce pillow chess, a way to play chess on a surface equivalent to 
the sphere where one can play with the standard pieces in their traditional positions.  
The edge identifications are shown in FIGURE 2; the left and right edges are identified 
with each other, while the top and bottom edges are identified with themselves. So, 
for example, when a rook travels up the "b" column and off the top edge of b8, it re
appears in g8 . Notice that unlike the torus chessboard, the board depicted in FIGURE 2 
isn't  homogeneous;  like the projective plane chessboard, it has corners. The midpoint 
of the bottom edge is such a comer: when you attempt to circle that point, the total 
angle traversed is only JT. This also occurs at the midpoint of the top edge, at the ex
treme top left point (which is identified with extreme top right point), and the extreme 
bottom left point (which is identified with extreme bottom right point) . 

Figure 2 The pi l low chessboard Figure 3 Examp le  of moves 

A little work with the Euler characteristic of surfaces such as these will show that the 
existence of 4 comers is virtually forced. Indeed, for any choice of edge identifications, 
the squares of the chessboard form a cell decomposition of the resulting surface S. For 
each integer i :::: 1 ,  let n; denote the number of zero-cells (that is, points) that are 
adjacent to i two-cells (squares). Then there are Li>i n; zero-cells, L; 4n; one-cells, 
and L; �n; two-cells and the Euler characteristic [48] is 
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If we agree only to form boards with ni = 0 for i other than 2 and 4, we get x (S) = !!:f 
and because x (S) ::: 2, this gives n2 = 4, 2 or 0. The case n2 = 2 is the projective 
plane. In the case n2 = 4, we get the sphere with 4 comers, which we call a pillow, 
for obvious reasons. One can form hyperbolic boards by allowing ni i= 0 for i i= 2, 4, 
but then one loses the concepts of horizontal and vertical, as long as one persists with 
squares that are really square. Boards paved by triangles or hexagons have been stud
ied [59, 33, 7] , but we will stay with squares. 

As in the other fairy chessboards described above, the pieces in pillow chess have 
a greater command of the board than in traditional chess; see FIGURE 3. For example, 
the knight at g l  can reach h l  by moving two squares to the right and one square down. 
The bishops travel along parallel lines: if the bishop moves from d7 through e8, it re
appears in c8, travelling along the parallel line through b7. (The bishops don't bounce 
off the top edge as in the reflecting queens introduced by Klamer [37] ; for more on 
reflecting queens, see articles by Guy [27, Se�tion C 1 8] or Gardner [24, Chapter 15 ] ,  
and the Klamer's Maths Review [38] of  Huff's paper.) To get used to pillow chess, 
we suggest considering the pillow chess problem posed in FIGURE 4; the solution is 
given at the end of the paper. When considering this problem, it may assist the reader 
to imagine what the game looks like "across the edges" of the board; such an expanded 
view is shown in FIGURE 5. 

a b c d e f g h 

Figure 4 White to p l ay. B l ack to mate i n  one! 

The aim of this paper is to revisit, on the pillow board, two classical chess problems 
of a mathematical nature: the knight's tour problem, and the n-queens problem. As 
is the tradition, we do not restrict ourselves to 8 x 8 boards. However, in order to 
retain the usual black-white pattern, we will restrict our attention to n x 2m boards. 

First, we need to understand better the nature of the pillow board. The pillow is an 
example of an orbifold. In the same way that a manifold is a space that looks locally 
like Euclidean space, an orbifold is a space that looks locally like the quotient of Eu
clidean space by a finite group action. In fact, the pillow was one of the first examples 
treated in Thurston's book [72] , where the term orbifold first appeared. Orbifolds were 
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Figure 5 Expanded view of the prob lem 

previously defined by Satake [63], who called them V -manifolds. For a nice intro
ductory treatment of orbifolds in a somewhat more restrictive sense, see Stillwell [70, 
Chapter 8]. 

The simplest example of an orbifold is the quotient of the plane by a finite group 
of rotations about the origin; the quotient is a cone, which is smooth everywhere ex
cept at a single conical singularity (the image of the origin) . The pillow is an orbifold 
which is smooth everywhere except at its 4 conical singularities. But the concept of an 
orbifold is quite subtle. Indeed, just as the pillow is homeomorphic to the sphere S2 , 
every 2-dimensional orbifold is homeomorphic to a 2-dimensional manifold; what dis
tinguishes the orbifold from the manifold is not just what it looks like topologically, 
but what it is geometrically. In our case, the pillow has the flat Euclidean geometry, 
and each of the 4 conical singularities has angle ;r. 

The pillow is a special kind of orbifold. It is not just locally a quotient by a fi
nite group action; we will show that it is globally the quotient of the torus by an 
action of the 2-element group Z2 . First recall that the torus can be regarded as the 
quotient space of the plane JR2 under the action of the group 'Z} by translation: 
(i, j) : (x, y) --+ (x + i, y + }) [54]. In this way, one can play chess on the torus 
by playing on the infinite plane and identifying appropriate squares; if the plane is 
tiled by unit-square chessboards, centered on the vertices of the integer lattice ;t:?, 
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then one identifies the square at (x, y) E JR2 with the squares at (x + i, y + j ) ,  for 
all (i, j)  E 'Z}. The board centered at (0, 0) is a fundamental domain [54] for the 'Z} 
action. Every chess piece on the torus board is thus represented by infinitely many 
replicas, each in the corresponding position on its tile/board. (FIGURE 6 depicts the 
torus with a queen and a knight.) 

Figure 6 The torus  as a quotient of the p lane 

In a manner similar to the representation of the torus as a quotient of the plane, the 
pillow can be realized as a quotient of the torus. One represents the torus 1!'2 as the unit 
square, centered at the origin in JR2 with opposite edges identified as in FIGURE la, 
and one considers the rotation a : 1!'2 --+ 1!'2 defined by a(z) = -z. The set {id, a} 
defines a 2-element group isomorphic to Z2. The upper half of the unit square is a 
fundamental domain for this action of this group, and you can convince yourself that 
the identifications on the boundary of the fundamental domain are precisely those 
of the pillow board. Thus, one can play chess on the pillow by playing on the torus 
centered at the origin and identifying diametrically opposite squares. 

The realization of the pillow board as a quotient of the torus is not just a curiosity; 
it is a useful tool. To fix ideas, let us say that a board is a set of squares, with marked 
edges, together with a rule for connecting edges in pairs. We say that two boards are 
equivalent if there is a bijection between their sets of squares that respects the edge 
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connections. Now notice that, whereas i n  the above description of the pillow board as 
a quotient of the torus we took the upper half of the torus as the fundamental domain, 
we could equally as well have taken the left-hand half as the fundamental domain. This 
simple observation immediately gives: 

LEMMA. The n x 2m pillow chessboard and the m x 2n pillow chessboard are 
equivalent. 

For example, the 8 x 8 pillow is equivalent to the 4 x 1 6  pillow, and one can readily 
experience this eql!ivalence by playing on the 4 x 1 6  pillow; see FIGURE 7. From 
this perspective, the 4 x 1 6  pillow is just the traditional Byzantine chessboard with 
additional top and bottom edge identifications, and the starting chess piece positions 
are also the same. 

Figure 7 The 4 x 1 6  p i l low chessboard 

The knight's tour problem 

The knight's tour problem is this: can a knight visit all the squares of the board exactly 
once and return to its starting position? In this paper we use the word tour in the sense 
of a closed or re-entrant tour. Some authors use the word tour in the more general 
sense of an open tour-one not requiring the knight to return to its initial position, 
and some authors refer to closed tours as circuits. As documented by Murray [52] 
(see also [53] and [68]), the knight's tour problem dates back over a thousand years 
to Indian chess and has numerous appearances throughout the history of the game of 
chess (but not back as far as 200 BCE, as some have claimed [73, 74]). The prob
lem was investigated by mathematicians such as Euler [2] and Vandermonde [71 ] ;  in 
modem terminology, the tour is an example of a Hamiltonian circuit [80] , [5, Chap
ter 1 1 ] .  There is a vast literature on the problem. As Kraitchik remarked [42] (in a 
paper first published in 1 941 ), "Many generalizations of the knight's problem have 
been proposed. Many alterations of the size and shape of the board have already been 
considered." 

One recurring topic is the (open) knight's tour on the half board [52, 53] . There are 
cute proofs of the impossibility of a closed tour on 4 x n boards; Honsberger gives 
P6sa's proof [32, p. 145] ,  and Gardner [22] gives a proof that he attributes to Golomb. 
The connection between knight tours on the 4 x 4 board (minus one square) and the 
1 5  puzzle was investigated in this MAGAZINE in 1 993 [34] . The number of knight's 
tours on the 8 x 8 board [ 46, 49] and the n x n board [ 43] have both been studied. 
Heuristics for generating tours are given by Shufelt and Berliner [67] . Boards of other 
shapes have also been studied [42; 47, Vol. 4] . Tours on the cylinder, Mobius band and 
Klein bottle appear in the "fanciful" account of Stewart [69, Chapter 7] and are studied 
in Watkins [78] . See Eggleton and Eid [17] for tours on infinite boards. For tours on 
boards with hexagonal tiles, see [44] . 
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Constructing a knight's tour on the (traditional) k x l rectangular chessboard is 
classical. The following theorem is stated without proof in Kraitchik's Mathemat
ical Recreations [ 42, Chapter 1 1 ] ;  independent proofs were given by Cull and De 
Curtins [16] (except for the k = 3 case) and Schwenk [65]. 

RECTANGULAR BOARD THEOREM.  For k  :S l , there is a knight's tour on the k X l 
rectangular chessboard unless one or more of the following three conditions hold: 

(a) k and l are both odd, 
(b) k = 1 ,  2 or 4, 
(c) k = 3 and l = 4, 6 or 8. 

Another proof of the rectangular board theorem for square boards is available [15] ; 
this also treats open tours that commence and terminate on specified squares. Open 
tours on n x m boards with min(n , m) ::=:: 5 are examined in [16] . Results for open tours 
on 4 x m boards are known [41, 73] , and the 3 x n case is treated elsewhere [41, 73, 
75]. (We alert the reader to the typographical error in the statement of [75, Theorem 2] , 
in which tour should read circuit in the language of that paper.) 

On the torus, Watkins and Hoenigman proved [79]: 

TORAL BOARD THEOREM. For all k, l, there is a knight's tour on the k x l torus 
chessboard. 

We now tum to the pillow board. Note that since the n x 2m pillow board is the 
quotient of the 2n x 2m toral board, it follows immediately from the previous theorem 
that there is a closed knight's path on the n x 2m pillow board that visits each square 
exactly twice. In fact, one has: 

THEOREM 1 .  For all n, m, there is a knight's tour on the n x 2m pillow chess
board. 

Proof By our Lemma, we may assume that n :::; m .  By the rectangular board the
orem, it suffices to consider the cases n :::; 4 and in the case n = 3 we need only 
consider m = 3 and m = 4. Moreover, by the Lemma, the 4 x 2m board is equivalent 
to the m x 8 board, so by the rectangular board theorem again, for n = 4 and n :::; m,  
we need only consider m = 4.  So this leaves us  with 5 cases to consider: ( 1 )  n = 1 ,  
(2) n = 2, (3 )  n = m = 3, (4) n = 3, m = 4,  and (5 )  n = m = 4. Tours on the 3 x 6 
and 3 x 8 boards are shown in FIGURE 8; the 3 x 6 example was taken from Watkins 
and Hoenigman's study of tours on the torus [79] (this particular tour uses only the 
side edge identifications) . A tour on the 4 x 8 board is shown in FIGURE 9. It remains 
to deal with cases ( 1 )  and (2) . 

1 16 13 

8 5 2 

1 5 12 9 

10 7 4 1 16 7 22 13 4 

17 14 11 20 11 2 17 8 23 

6 3 18 1 5 6 21 12 3 18 

Figure 8 Tours on the 3 x 6 and 3 x 8 p i l l ow boards 

19 10 

14 5 

9 24 

Each move of a knight can be represented by a pair (i, j ) ,  with i, j E {±1 ,  ±2} ,  
where for example ( 1 ,  2)  means move 1 square to the right and 2 squares up (in the ob
vious sense). For convenience, we adopt a notation similar to that of Monsky [50] ; we 
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1 

24 

19 

30 

20 11 26 17 8 23 

15 2 21 12 27 18 

10 25 16 7 22 13 

29 6 3 28 31 4 

Figure 9 Tour on the 4 x 8 pi l low board 

14 

9 

32 

5 

let A =  ( 1 , 2) , B = ( 1 ,  -2) , C = (- 1 ,  2) , D = (- 1 ,  -2) , E = (2, 1 ) ,  F = (2, - 1 ) ,  
G = (-2 ,  1 ) ,  H = (-2, - 1 ) ,  and we interpret the word A(BC)2 , for example, to 
mean the sequence of moves A, B, C, B, C .  In Case ( 1 ), a simple tour is given by the 
sequence A 2m; FIGURE 10 shows the example of the 1 x 8 board. In Case (2), we start 
at the top left comer and make the following sequence of moves: 

for m even, m = 2k, B(C B)m- 1 H(EF)k- 1 EB(GH)k- 1G2• 
for m odd, m = 2k - 1 ,  B(C B)m- 1 H(EF)k- 1 A (HG)k- 1G. 

FIGURE 1 1  shows the example of the 2 x 6 and 2 x 8 boards. 

1 12 3 8 

6 7 4 11 

1 2 1 3 1 4 1 5 1 6 1 7 1 8 

Figure 10 Tour on the 1 x 8 pi l low board 

5 10 1 16 3 10 5 

2 9 8 9 6 1 5  4 

14 

11 

Figure 11 Tours on the 2 x 6 and 2 x 8 pi l low boards 

The n-queens problem 

• 

7 12 

2 13 

The n-queens problem is this: can one place n queens on an n x n board such that no 
pair is attacking each other? Such queens are said to be nonattacking or invulnerable. 

This problem dates back to the middle of the 1 9th century [10] . The traditional 
board has solutions for n =!= 2, 3, while the n x n torus board has solutions when n 
is not divisible by 2 or 3. The problem was solved for the torus by P6lya [57] and 
the traditional board by Ahrens [1] and essentially the same underlying idea has been 
used by several authors. The key construction for n relatively prime to 6 appeared 
in Theorem II at the end of the 4th section of Lucas' book [47, Vol. 1 ] ,  which was 
published originally in 1 883. For more recent presentations and formulations of this 
idea, see [13, 25, 40] , for the torus, and [ 4, 20, 31, 60, 81], for the traditional board. 
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(Incidentally, the n-queen problem for the torus is obviously equivalent to the n-queen 
problem for the cylinder.) 

The basic construction can be described as follows: start on any given square on 
the torus, and make repeated knight moves (2, 1 ) ,  placing a queen on each square that 
one visits. Regarding the initial square as the origin in Zn x Zn , this places queens on 
the squares k (2, 1 ) ,  where the entries are reduced modulo n .  More generally, solutions 
of the form k(d, 1 ) ,  for some d, are said to be linear or regular. Most authors are 
content in giving a particular linear solution. A systematic approach is adopted by 
Erbas, Tanik, and Aliyazicioglu [19] (see also [18, 45, 66]). Nonlinear solutions are 
given by Bruen and Dixon [9] and by Chandra [11] . When n is not divisible by 2 or 3 ,  
the d = 2 case gives a solution on the torus, and one can easily deduce a solution on the 
n x n traditional board for n "¢ 2, 3 (mod 6) . The cases n = 2, 3 (mod 6) can be treated 
by combining two linear parts; a succinct description is given in a Monthly article on 
the subject [61] .  These solutions were already considered by Lucas, who called them 
semi-regular [47, Vol. 1 ,  p. 64] . 

Many other aspects of the n-queen problem have been studied. In addition to the 
question of existence, one may also investigate the number of solutions. This latter 
problem is still largely open [62, 61] . When no solutions exist, one is interested in 
the maximum number of nonattacking queens that can be placed on the board. This 
has been completely solved for the torus [50, 28, 12, 29, 51] . Like the knight's tour 
problem, the n-queens problem has a graph theoretic interpretation: the existence of a 
maximal stable set [5, Chapter 4; 6, Chapter 13 ] .  The problem has been examined in 
higher dimensions [39, 55] , and on infinite boards [14] . The n-queens problem has 
found many echoes in computer science; according to Vardi [76] , it is "a canoni
cal homework assignment in introductory programming classes." See the references 
at the end of Section 6.4 of [30] . The queens problem has also been turned into a 
game [64] . 

Variations on the n-queens problem have been studied by changing the possible 
moves of the queen: a semiqueen is a queen that can't move on the negative diago
nals [21 ;  36; 47, Vol.  1 ,  p. 84, Theorem I; 76] ; an amazon is a piece that can move 
like a queen and a knight [26, 11 ] .  Incidentally, the term amazon is traditional [8, 
Section 30; 33] ; the term superqueen is sometimes used [23, Chapter 16 ;  26] ,  but su
perqueen is also used to mean a queen on a torus [11, 50, 35] . Amazons are called 
nite-queens by Chandra [11] .  

Now we tum to the pillow board. By our Lemma, the 2m x 2m pillow board is 
equivalent to the m x 4m pillow board, which has m rows. So one can place at most 
m nonattacking queens on the 2m x 2m pillow board. Thus a solution requires the 
placing of half as many queens as on the traditional board, but each queen commands 
more squares, in fact, twice as many squares, for most positions. Investigations on 
small boards show that solutions are more abundant than on the traditional board. 
According to my calculations, for m = 2, 3, 4, 5, 6, the 2m x 2m pillow chessboard 
has 24, 64, 768, 6464, 54656 solutions respectively. In general, one has: 

THEOREM 2. For all m, the 2m x 2m pillow chessboard admits m nonattacking 
queens. 

Before proving this result, let us look more closely at the notion of nonattacking 
queens. We give the squares coordinate labels (x , y) , x , y E { 1 ,  . . .  , 2m } in the ob
vious way, starting at ( 1 ,  1 )  in the bottom left-hand comer. Notice that queens on 
the traditional board at distinct positions (x1 , y1 ) , (x2 , y2) are nonattacking if and 
only if the following 4 conditions hold: x1 =I= Xz , Y1 =I= yz , (yl - xt ) =I= (Yz - xz) , 
(y1 + x1 ) =I= (y2 + x2) .  On the torus one has similar conditions, with equality replaced 
by equivalence modulo 2m. On the pillow, the conditions are: x1 =I= xz , Y1 =I= yz , 
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JL(y, - x, ) =I= JL(Y2 - x2) , JL (y, + x ,  - 1 )  =/= JL(Y2 + x2 - 1 ) ,  where the function JL is 
defined as follows. Let [i ] denote the remainder of i modulo 2m . Then 

( " ) = { [i ] if [i ] :::;: m ,  JL z 
[ -i ] otherwise. 

Proof There is an obvious solution for m = 1 . For m > 1 ,  let A = { (i ,  2i ) : i < 
�m }  U { (i ,  2i + 1 ) : �m :::: i < m}  and B = { (i ,  2i + 1 )  : i < m}  and place a queen 
at each point in the following set: { A U { (m + 1 ,  m + 1 ) }  

C =  B U { (m , m + 1 ) }  
B U { (m + 1 , m) }  
A U  { (m ,  m) }  

if m = 0 (Mod 6), 
if m = 1 or 5 (Mod 6) , 
if m = 2 or 4(Mod 6) , 
if m = 3 (Mod 6). 

These positions are just a variation on the classical idea; we begin near the bottom 
left corner and proceed up the board using knight moves, placing a queen on each 
square visited. When m is divisible by 3, there is a little skip near the major diagonal. 
Finally there is a solitary rogue queen near the middle of the board. The positions for 
m = 6, . . .  , 9 are shown in FIGURES 1 2  to 15  . 
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The proof that the m positions in C are nonattacking is perhaps best done by con
sidering three separate cases: (a) m divisible by 6, (b) m divisible by 3 but not by 6, 
and (c) m not divisible by 3. We briefly describe case (a). From the construction of C, 
no two positions are in the same column. So we must show that the positions are also 
in distinct rows, distinct negative diagonals, and distinct positive diagonals. This gives 
three things to check: 

Row Check 

( 1 )  2i = m + 1 is impossible for m even. 
(2) 2i + 1 = m + 1 ===} i = m/2 ===} �m 1: i . 
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Negative Diagonals Check 

( 1 )  For i , j < �m ,  JL (i ) = JL (j) ==> i = j . 

(2) For i < �m ,  �m ::::; j < m ,  JL (i ) = JL(j + 1 )  ==> i = j + 1 ,  which is impossible 
as i < j .  

(3) For i < �m ,  j = m + 1 ,  JL (i ) = JL (O) ==> i = 0 ,  which i s  impossible. 

(4) For �m ::::; i , j < m, JL (i + 1 )  = JL (j + 1 )  ==> i = j .  

(5) For �m ::::; i < m ,  j = m + 1 ,  JL (i + 1 )  = JL (O) ==> i + 1 = 0 ,  which i s  impos
sible. 

Positive Diagonals Check 

( 1 )  For i ,  j ::::; mj1 , JL (3i - 1 )  = JL (3j - 1 )  ==> i = j .  

(2) For i :::=; mj 1 , mj' < j < �m ,  JL (3i - 1 )  = JL (3j - 1 )  ==> 3i - 1 = 
2m - 3j + 1 ,  which is impossible for m divisible by 3 .  

(3) For i ::::; mj1 , �m ::::; j < m ,  JL (3i - 1 )  = JL (3j) ==> 3i - 1 = 3j - 2m,  which is 
impossible for m divisible by 3 .  

(4) For i ::::; mj1 , j = m + 1 ,  JL (3i - 1 )  = JL (2m + 1 )  ==> 3i - 1 = 1 ,  which is im
possible. 

(5) For mj1 < i , j < �m ,  JL (3i - 1 )  = JL (3j - 1 )  ==> i = j .  

(6) For mj1 < i < �m ,  �m ::::; j < m, JL (3i - 1 )  = JL (3j ) ==> 2m - 3i + 1 
3j - 2m ==> 4m + 1 = 3 (i + j ) ,  which is impossible for m divisible by 3 .  

(7) For mj1 < i < �m ,  j = m + 1 ,  JL (3i - 1 )  = JL (2m + 1 )  ==> 2m - 3i + 1 = 1 ,  
which is impossible for i < �m. 

(8) For �m ::::; i , j < m ,  JL(3i )  = JL (3j) ==> i = j .  

(9) For �m ::::; i < m ,  j = m + 1 ,  JL(3 i )  = JL(2m + 1 ) ==> 3i - 2m = 1 ,  which is 
impossible for m divisible by 3 .  

This completes case (a) .  Cases (b) and (c) can b e  treated i n  an analogous manner; 
we leave their verification to the reader. • 
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Final comments 

We finish with two comments. First, it would be interesting to extend Theorems 1 and 2 
to pillow chessboards that do not have the usual black-white pattern, as is already the 
case for the results on the torus. This means considering pillow boards that are obtained 
from the n x m torus, with m and/or n odd, by identifying diametrically opposite 
squares, as discussed above. This entails some unusual features; when n and m are 
both odd, the fundamental domain no longer consists of an integer number of squares, 
so the "board" looks rather odd. Also, if m is odd and n is even, one of the squares has 
an edge which is identified with itself! 

Second, we remark that pillow chess is by no means the first chess game to be 
played on the sphere. There is a great number of chess variants (see Pritchard [59] and 
the web site www.chessvariants.com). In particular, we mention Global Chess, which 
is a commercial variant played on two revolving disks representing the hemispheres 
(here the "squares" at the poles are triangles), and Andrea Mori 's small spherical chess, 
which is obtained from a cylindrical board by adding two additional (pole) squares, one 
at each end. Don Miller's spherical chess [59] as modified by Leo Nadvomey, is very 
close in appearance to pillow chess (the identifications are shown in FIGURE 1 6),  but 
in fact this board is not a sphere but a Klein bottle ! 

Figure 1 6  

Solution to the pillow chess problem. First notice that white can't move its rook 
at h4, since this would disclose check by black's bishop at g5 ! As well, e2 and f1 are 
covered by black's bishop at d7. Thus black is threatening mate in three ways: Rfl, 
Nfl and Nxe2. White can avoid all these attacks only by playing Re i ,  in which case 
black mates with RxR. 

Acknowledgments. My thanks go to John Bamberg for battling me in several games of pillow chess, to Andrej 
Panjkov for interesting suggestions for further generalizing pillow chess, and to Andrew Gove and Danny Sleator 
of Chessclub.com, whose software Chess Viewer produced the chessboard graphics in this paper. 
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Automatic differentiation is a way to find the derivative of an expression without find
ing an expression for the derivative. More specifically, in a computing environment 
with automatic differentiation, you can obtain a numerical value for f' (x) by enter
ing an expression for f (x) . The resulting computation is accurate to the precision 
of the computer system-it does not depend on the approximation of derivatives by 
difference quotients. Indeed, the computation is equivalent to evaluating a symbolic 
expression for f' (x) , but no one has to find that expression-not even the computer 
system. 

That's right. The automatic differentiation system never formulates a symbolic ex
pression for the derivative. Automatically calling on something like Mathematica to 
produce a symbolic derivative, and then plugging in a value for x is the wrong image 
entirely. Automatic differentiation is something completely different. 

Well OK, but so what? Symbolic algebra systems are so prevalent and powerful 
today, why should we be concerned with avoiding symbolic methods? There are two 
answers. The first is practical. Symbolic generation of derivatives can lead to expo
nential growth in the length of expressions. That causes computational problems in 
real applications. Accordingly, there is a practical applied side to the subject of auto
matic differentiation, as witnessed by the serious attention of computer scientists and 
numerical analysts [3, 4] . 

The second answer is more mathematical. It is a relatively easy task to create a sin
gle variable automatic differentiation system capable of evaluating first derivatives. In 
fact, writing in this MAGAZINE in 1 986, Rall [10] gives a beautiful presentation of just 
such a system. What is mathematically interesting is an amazingly elegant extension 
of the one-variable/one-derivative system that handles essentially any number of vari
ables and derivatives. The extension is recursively defined, employing an induction on 
both the number of variables and the number of derivatives, and using fundamental 
definitions that are virtually identical to the ones used in Rail's system. 

The purpose of this paper is to present the recursive automatic differentiation sys
tem. To set the stage, we will begin with a brief review of Rail's one-variable/one
derivative system, followed by an example of the recursive system in action. Then the 
mathematical formulation of the recursive system will be presented. The paper will 
end with a brief discussion of practical issues related to the recursive system. 

Rail's system 

Because automatic differentiation is a computational technique, it is best understood 
in the context of a computer language. In particular, recall that in a scientific computer 
language such as Basic, or FORTRAN, variables correspond to memory locations. For 
example, consider the statements 

x = 3  
f = x2 - 5. 
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The first causes a value of 3 to be stored in the memory location for x, while the 
second reads the value of x, squares it, subtracts 5, and stores the result in the memory 
location for f.  We can think of this as a procedure for evaluating the function f (x) = 
x2 - 3. 

In Rall's system, the idea is to simultaneously evaluate both f (x) and f' (x) . In this 
system, each variable corresponds to an ordered pair of memory locations, one for the 
value of a function, and one for the value of the derivative. Now the goal is for the 
statements above to produce the pair (4, 6) , incorporating the values of both / (3) 
and /' (3) .  

This is accomplished as follows. First, when a variable is assigned a value in a state
ment such as x = 3 the automatic differentiation system stores in the memory for x 
the pair (3,  1 ) .  This corresponds to the value of the identity function I (x) = x, and its 
derivative, at x = 3. Second, any numerical constant that appears in an expression is 
represented by a pair corresponding to the value and derivative of a constant function. 
For the example above, the constant 5 is represented by (5 , 0)-the value of the con
stant function C(x) = 5, and its derivative. Finally, each operation appearing in the 
expression is carried out in an extended sense, operating on pairs. The rule for pair 
addition or subtraction is just the usual componentwise operation. The rule for pair 
multiplication is 

( 1 )  

Using these definitions, we can anticipate what the automatic differentiation system 
will do in response to the pair of statements 

x = 3 

f = x2 - 5. 

The first statement leads to the creation of the pair (3 , 1 ). The second statement trans
lates into a sequence of operations on pairs: 

f = (3,  1 )  X (3 , 1) - (5 , 0) 

= (3 . 3, 1 . 3 + 3 . 1) - (5 , 0) 

= (9, 6) - (5 , 0) 

= (4, 6).  

As easily verified, this result correctly represents the value of both x2 - 5 and its 
derivative at x = 3. Notice that there is no symbolic computation here. However, the 
equivalent of symbolic differentiation rules are built into the definitions of pair addition 
and multiplication. Thus, the expression for f is evaluated to produce both the value 
of the expression and of its derivative. 

It should be stressed that the operations on pairs can be formulated without any 
reference to functions and derivatives. We adopt an abstract framework with objects 
(ordered pairs) and operations. As defined above, ordered pairs can be added, sub
tracted, and multiplied. In fact, extended operations for pairs can be defined for all the 
usual elementary functions. For example, the sine of a pair is defined according to 

(2) 

Of course, these abstract definitions are inspired by the idea that each ordered pair will 
contain values of a function and its derivative. To make the connection explicit, we will 
use the notation f[l . l l (x) = (f (x) , f' (x)) , where the [ 1 ,  1 ]  indicates the presence of 
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one variable, and the inclusion of one derivative. Thus, in the original computation, we 
found f [ l . l l (3) = (4, 6). Similarly, using the sine operation for pairs, the statements 

x = 3  

g = sin(x2 - 5) 

result in the computation of sin(4, 6) = (sin 4, 6 cos 4) . The elements of this ordered 
pair are the correct values of sin(x2 - 5) and its derivative at x = 3 .  That is, with g (x) 
defined as sin(x2 - 5) ,  the lines above compute g [ l . l l (3) . 

What makes the system work is that each operation correctly propagates derivative 
values. For the arithmetic operations, that means 

jl ' · ' l (3) + 
g

[ 1 . 1 ] (3) = (f + 
g) [ l . l ] (3) 

! [ 1 . 1 ] (3) - g
[ l . l ] (3) = (f - g) [ l . l ] (3) 

j [ l , l ] (3) X g
[ 1 . 1 ] (3) = (fg) [ l . l ] (3 ) .  

(3) 

Observe that the rules for addition, subtraction, and products of pairs are based on the 
sum and product rules for derivatives. Similarly, (2) is really nothing more than the 
chain rule, since the derivative of sin(f(x))  is  given by cos(f (x))f ' (x ) .  With a1 in 
place of f (x) and a2 in place of f' (x ), this becomes cos(aJ )a2 . That shows that in (2), 
if (a 1 , a2) = f [ l , l l (3 ) ,  then sin(a 1 , a2) = sin(f[ l . l l (3))  = (sin o f) [ l , l l (3) . In a similar 
way, any differentiable function ¢ can be extended to pairs by the formula 

(4) 

With this definition, we have 

(5) 

Although these examples pertain to a function of a single variable, and involve 
only a single derivative, it is easy to envision extensions involving several variables 
and partial derivatives of various orders. Throughout, we will restrict our attention to 
functions sufficiently smooth so that order of differentiation does not matter. 

In the recursive system that we will present below, the idea is to compute all of the 
partial derivatives up to some specified order. In this system, evaluating a function f 
at a point in its domain means determining an object pn.ml that contains the function 
value as well as the values of all partial derivatives through order m with respect to 
n variables. These objects are referred to as derivative structures. Since m defines 
the maximum number of derivatives, it is called the derivative index. Similarly, n is 
the variable index. As in the discussion above, we can proceed abstractly by defining 
derivative structures and appropriate operations without any mention of functions and 
derivatives. However, given a function f ,  we do need some way to construct pn .ml as 
one of our abstract derivative structures, and equations analogous to (3) and (5) must 
hold. 

The recursive system in action 

Before describing the abstract system, let's take a look at how the system operates. 
Consider the function 

v'x+Y f (x , y , z) =  � ·  
y Z - y 
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and suppose we wish to evaluate f and all partial derivatives through second order at 
the point (4, 5 ,  14). The recursive automatic differentiation system can be given this 
problem with the following commands (with slightly modified syntax for readability) :  

x = DS-Make -Var ( 3 , 2 , 1 , 4 ) 
y DS-Make-Var ( 3 , 2 , 2 , 5 ) 
z = DS -Make-Var ( 3 , 2 , 3 , 1 4 )  
u DS- Sqrt (DS-Add ( x , y ) ) 
v DS-Sqrt (DS-Sub ( z , y ) ) 
Print DS-Divide (u , v )  

These commands involve applications of several different functions within the auto
matic differentiation system. First, there are three invocations of DS-Make -Var . This 
function creates the derivative structures corresponding to the independent variables 
x, y, and z. For example, x = DS-Make -Var ( 3 , 2 , 1 , 4 ) creates a derivative struc
ture for 3 variables, and for partial derivatives through order 2, corresponding to vari
able number 1 (x ), and assigning that variable a value of 4. This command is the 
equivalent of x = 4 in the one-variable/one-derivative system. Similarly, the next two 
statements create the derivative structures corresponding to variables y and z, assign
ing values of 5 and 14, respectively. The other commands are the derivative structure 
versions of standard operations; DS-Add is addition of derivative structures, DS- Sqrt 
applies the square root for derivative structures, and so on. So the fourth statement 
adds the derivatives structures for x and y and takes the square root of the result. That 
defines a new derivative structure, u. Similarly, the next line defines v by subtracting 
y from z, and applying the derivative structure for square roots. The final command 
applies derivative structure division to u and v, and prints the result. 

As in Rall 's system, the computations above are completely numerical. For ex
ample, the derivative structure for the variable x stores the value of x, 4, as well as 
all the partial derivatives through second order with respect to x, y, and z. These val
ues are, of course, trivially determined. The partial derivative with respect to x is 1 ,  
and all the other partial derivatives are 0 .  But the point is that the derivative structure 
called x is just some sort of array with entries of 4, 1 ,  and many zeroes. In the same 
way, y and z are arrays of numbers as well . When these are combined according to the 
commands listed above, the final result is printed out as 

0.0 1 235 
0. 1 1 1 1 1  0.00000 -0.01 235 
1 .00000 0.05556 -0.00309 -0.05556 -0.00309 0.00926. 

These are the values of f and its derivatives, in the following arrangement: 

/yy 
/y fxy /yz 
J fx fxx fz fxz fzz · 

The subscripts indicate partial differentiation: fx for �� ,  fxy for ::L, and so on. The 
rationale for laying out the derivatives in this way will become clear when the general 
system is defined. For this example, it is enough to see how the system operates, and 
to observe that all the desired partial derivatives are correctly computed. 

At this point, I hope that the basic idea of the automatic differentiation system is 
clear. Numerical values for a function and its derivatives are arranged in some sort of 
data structure, and operations on these structures are defined according to the rules of 
differentiation so that derivatives are correctly propagated. The structures for the sim
plest functions, namely the constant functions (like c (x, y ,  z) = 5) and variables (like 
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11 (x, y, z) = x)  are easy to specify directly. By operating on these simple derivative 
structures, we can formulate derivative structures for essentially arbitrary expressions 
involving the variables and elementary functions. 

Although these ideas are feasible in principle, I also hope the reader has some sense 
of the difficulty of handling all the details in practice. At first glance, the . idea of 
defining appropriate structures to contain all the partial derivatives through second 
order relative to three variables, and then specifying the proper operations of arith
metic, as well as proper definitions for functions like sine and cosine, should seem 
fairly intimidating, or at least unpleasantly tedious. Happily, and surprisingly, there 
is a remarkably simple recursive formulation that is no more complicated than Rall 's 
one-variable/one-derivative system. Indeed, considered formally, the operations within 
this recursive formulation are virtually identical to the operations in Rall 's system. 
With that in mind, let us tum now to the recursive development of an automatic differ
entiation system. 

The objects 

The first step in constructing the recursive system is to define the objects, or deriva
tive structures, on which we will operate. Let us consider a few motivating exam
ples. First, for functions of a single variable, automatic calculation of m derivatives 
can be provided by operating on (m + I ) -tuples. A typical object in the system, 
a = (ao , a1 , · · · , am ) ,  includes the value of a function and its first m derivatives. For 
example, with m = 3, we can write 

For a function of two variables, assuming equality of mixed partials, the par
tial derivatives through order m are conveniently arranged in a triangular array. 
This is illustrated in FIGURE 1 for m = 3 .  It is important to note that the entry 
in the lower left-hand comer has a special significance. In the derivative struc
ture f[2,ml , the lower left-hand comer is the value of the original function f. 

/yyy 
/yy /yyx 
/y /yx /yxx 
J fx fxx fxxx 
Figure 1 Layout of f[l , J J  

Observe that the array in FIGURE 1 can be decomposed into two parts. The bottom 
row is a vector of derivatives with respect to a single variable, as described in the 
preceding paragraph. That is, the bottom row is just f[l ,3l .  The second part, all of the 
triangle except the bottom row, is also a derivative structure, namely /y [2• 21 ; it contains 
the value of /y , and all of its first and second order partial derivatives with respect to 
x and y .  This gives /[2• 31 as a combination of Jl1 · 3l and /y [2• 2l . 

In a similar way, we can lay out the entries of f[3 • 3l ,  that is, the partial derivatives 
through third order with respect to three variables (see FIGURE 2). The partial deriva
tives are arranged in a pyramid composed of several triangular layers. Each layer has 
the same form as the triangular array in FIGURE 1 .  As before, there is a distinguished 
entry identifying the function f, at the lower left-hand comer of the lowest level. 
Also, as before, there is a natural decomposition into two parts. The first part is the 
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bottom triangular array, which is recognizable as /[2• 31 . It contains all partial deriva
tives through order m = 3 with respect to x and y .  The complementary part is the 
sub-pyramid made up of levels 2, 3, and 4. This can be recognized as fz [3 • 21 . It con
tains all partial derivatives relative to the three variables x, y, and z, through order 2 of 
the function fz . The decomposition gives /[3 · 31 as a combination of /[2· 31 and fz [3 • 21 . 

f 

Figure 2 Layout of f[3 , 3 l 

These examples suggest a hierarchy of automatic differentiation objects. For any 
n and m,  we can imagine a set of objects that contain all partial derivatives through 
order m with respect to n variables. These will be our derivative structures. Thus, for 
a single variable we have derivative vectors; for two variables, derivative triangles; for 
three variables, derivative pyramids; and in general, derivative structures. 

The decomposition discussed in the examples above can be described in general us
ing the terminology of derivative structures. For each example we considered, a deriva
tive structure of partial derivatives through order m with respect to n variables was 
partitioned into two smaller derivative structures. The first part had the same number 
of derivatives (m) and one fewer variables (n - 1 )  than the original structure, while the 
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second part had one fewer derivatives (m - 1 )  and the same number of variables as 
the original. These observations inspire the following recursive definition of derivative 
structures. 

DEFINITION 1 .  For m,  n :=:: 0, we define DS(n ,  m ), the set of derivative structures 
with derivative index m and variable index n, asfollows. lfm = 0 or n = 0, DS(n ,  m) 
is just JR, the real numbers. Otherwise 

DS(n ,  m) = DS(n - 1 ,  m) x DS(n ,  m - 1 )  

(where x denotes the Cartesian product). 

It should be emphasized here that this definition makes no mention of functions 
or derivatives. It abstractly defines a class of objects, built up recursively, and reduc
ing to real numbers at the lowest level of the recursion. In this context, a derivative 
structure is understood most simply as a binary tree, with real numbers as the leaves. 
An element a E DS(4, 7) , for example, has two components, one in DS(3 , 7) and the 
other in DS(4, 6). Each of these components likewise has two components, as shown 
in FIGURE 3. Each branch of the tree ends when one of the two indices reaches zero, 
indicating that the corresponding component is a real number. For a = f[n ,ml , the real 
numbers at the leaves are simply the values of partial derivatives of f . However, this 
visualization turns out to be of limited value. Instead, the best approach is to retain the 
recursive image of an element of DS(n, m) as an ordered pair, each of whose compo
nents is a lower order derivative structure. 

DS (4 ,7) 

DS (3,7)  DS (4 ,6) 

DS (2,7) DS (3 ,6) DS (3 ,6) DS (4 ,5)  

Figure 3 Part ia l  Tree for a E 05(4 , 7) . 

The idea of a derivative structure as an ordered pair hints at the connection to Rall's 
automatic differentiation system. Shortly we will see that the definitions for operations 
on derivative structures make this connection into a perfect analogy. But there is one 
final prerequisite needed. In terms of the triangular arrays and pyramids considered 
earlier, the two components of a derivative structure are particular substructures. For 
example, if a = (a1 , a2) is a derivative pyramid, then a1 is a derivative triangle, and a2 
is a smaller derivative pyramid. We also need a third substructure, denoted ar .  Later 
an abstract recursive definition of ar will be provided. But conceptually, think of ar 
as follows: If the derivative structure a = f[n ,m] , then it contains within it f[n ,m- Il , the 
derivatives up to order m - 1 .  That substructure is ar ,  Thus, in FIGURE 1 ,  a1 is the 
bottom row, a2 is the sub-triangle consisting of everything but the bottom row, and ar 
is  the triangle that contains everything except the third order derivatives lying along 
the hypotenuse. Notice that a2 and ar have the same size and shape, but are derivative 
structures for different functions. Similarly, in FIGURE 2, the triangle on the lowest 
level is a! '  the remaining levels form the sub-pyramid a2 , and ar is the sub-pyramid 
consisting of everything except the highest order derivatives lying on the slanting outer 
face of the pyramid. 
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This completes the background w e  need to define derivative structure operations. 
We know that a derivative structure a is an ordered pair (a 1 , a2) ,  that the components 
are derivative substructures of lower order, and that ar is another sub-structure with 
the same size and shape as a2 • The operations on derivative structures are defined in 
terms of these substructures. 

Operations on derivative structures 

To build expressions out of derivative structures, we need to be able to apply arith
metic operations and elementary functions. By considering the reciprocal function 
r (x) = 1 I x as one of our elementary functions, we eliminate the need to define deriva
tive structure division. To divide ajb we simply multiply a x r (b) . Accordingly, the 
only arithmetic operations that we need are addition, subtraction, and multiplication. 
As a convenience we will also include scalar multiplication. 

The definitions of all the arithmetic operations are recursive. The case of addition, 
subtraction, and scalar multiplication will make this clear. 

DEFINITION 2 .  For DS(O, m) and DS(n ,  0), the elements are real numbers and 
addition, subtraction, and multiplication are the usual real number operations. For 
n ,  m > 0, let a =  (a1 , a2) and b = (b� > b2) be elements of DS(n ,  m), and let r be a 
real number. Then addition, subtraction, and scalar multiplication are defined by 

a + b = (a1 + b� > az + bz) 

a - b = (a1 - b1 , az - bz) 

ra = (ra1 , raz) .  

Formally, these are identical to the componentwise definitions in Rall 's system. But 
they have a slightly different meaning in the present context. To add a and b we must 
add their components, which are themselves derivative structures. The computer im
plementation of the addition is thus recursive. To add two elements of DS(3 , 4) , for 
example, we recall the addition operation for components in DS(3, 3) and in DS(2, 4) . 
Those additions, in tum, spawn additions of more derivative structures. At each recur
sion, though, one of the two indices is reduced. Eventually, an index becomes zero, 
and the recursion terminates with an addition of real numbers. Subtraction and scalar 
multiplication operate similarly. 

The definition of multiplication is again an analog of what we saw in Rall 's system. 

DEFINITION 3 .  For DS(O, m) and DS(n ,  0) multiplication is defined to be the 
usual real number operation. For n ,  m > 0, if a = (a1 , a2 ) and b = (b1 , b2) are ele
ments of DS(n ,  m), define 

a x b = (a1 x b1 , az x br + a� x bz) .  

Formally, this is virtually identical to the one-variable/one-derivative multiplication 
rule defined by ( 1 ) .  The only difference is that there are no asterisks in ( 1 ) .  Indeed, 
the ordered pairs in Rall's systems are elements of DS( l ,  1 ) ,  and in that setting, a1 
and ar are identical. However, while there are clear formal similarities between mul
tiplication in Rall's system and in DS(n ,  m) ,  it must be remembered that in the latter 
system the definition is recursive. As for the operations of addition, subtraction, and 
scalar multiplication, the multiplication of derivative structures requires multiplying 
their components, and hence a recursive use of multiplication. And as we saw earlier, 
the recursive process keeps generating more and more multiplications, finally reaching 
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a point at which the derivative objects reduce to  real numbers. So, while the multiplica
tion definition seems to have the same simplicity as in Rail 's system, under the surface 
there is a complex sequence of operations implicitly defined. 

Finally we come to the elementary functions. Given a derivative structure a and an 
elementary function ¢, we wish to define ¢ (a) .  Once again, the definition is almost 
identical to what appeared in Rail 's system. 

DEFINITION 4 .  Let ¢ be an m-times differentiable function of a real variable. If 
m = 0 or n = 0, DS(n ,  m) is just lR and ¢ is applied to the elements in the usual way. 
For n ,  m > 0, if a =  (a1 , a2) E DS(n ,  m), define 

This definition is a direct analog of (4) , to which it reduces in the case that 
n = m = 1 .  As we saw with multiplication, the only formal difference is the ap
pearance of an asterisk in the general derivative structure definition. Here again, the 
actual computation of ¢ (a) is recursive, and the recursion terminates when ¢ or one 
of its derivatives is finally called upon to operate on a real number. 

That's it. That is all you need to construct arbitrary elementary function expressions 
involving general derivative structures. As promised, the definitions are virtually the 
same as those in Rail's system, and yet they provide for the automatic generation of 
partial derivatives to essentially arbitrary order with respect to an essentially arbitrary 
number of variables. But the presentation is not quite complete. We still have to see 
how to create the fundamental derivative structures that correspond to constants and 
variables. And at some point we need to see why the definitions just given really work. 

Fundamental derivative structures 

So far, we have defined derivative structures and their operations abstractly, without 
mention of functions and partial derivatives. To make the connection with automatic 
differentiation clear, we must have a definition of pn.mJ as an element of DS(n ,  m) .  

DEFINITION 5 .  Let f be a function of at  least n variables with continuous partial 
derivatives through order m, and let x be an element of the domain of f. Then the 
derivative structure for f with derivatives through order m with respect to the first n 
variables is given at x by 

f[n m] ( ) { f (x) 
. ' X = (f[n- l ,ml (x ) , (anf) [n ,m- l ] (x )) 

ifn = 0 or m = 0 
otherwise 

where an denotes partial differentiation with respect to the nth variable of f. 

This definition is a formalization of the pattern we saw in special cases, but some 
caution is needed. How do we know that f[n ,mJ ,  as defined here, really does contain 
all the partial derivatives it is supposed to? For now the reader is asked to accept the 
validity of the definition. We will return to the justification in the next section. 

Given the preceding definition, we can construct derivative structures for constants 
recursively. For example, to create the derivative structure for the constant 5 ,  we con
sider the constant function f (x , y, z, . . .  ) = 5. Now f[n,m] has two components. The 
first is f[n- I ,ml ,  and that can be constructed recursively. The second is anf [n- I ,ml , and 
since f is constant, the partial derivative is 0. But that is again a constant function. 
Thus, a recursive construction algorithm can operate similarly to the operation al
gorithms. To construct a constant in DS(n , m) ,  we must first construct constants in 
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DS(n - 1 ,  m) and DS(n ,  m - 1 ) .  The recursion proceeds until one index becomes 0, 
and at that point the value of the constant is returned. That constant is 5 just once, 
corresponding to tracing the left branch all the way down the tree to a leaf. In any 
path that involves a right branch, the function will be differentiated at least once, and it 
will be a zero function that is finally evaluated. On some level, however, this image is 
irrelevant. All that really matters is that a simple recursive construction algorithm for 
constants exists in the automatic differentiation system. 

To illustrate the situation for the independent variables, let's consider the function 
12 (x , y ,  z) = y. How do we construct /2 [3• 21 at y = 8, for example? At the top level, 
fz [3 • 21 is an ordered pair. The first component is /2[2• 21 , which will be constructed recur
sively. The second component is az fz[3 • 1 1 , and since azy = 0 that is just the derivative 
structure of the constant 0. It can be constructed using the algorithm for a constant. 
At the next level, /z [2 •21 is decomposed into /z [ 1 ,21 and ay i2 [2, l l . For the first of these, 
notice that the first index is 1 .  This is a derivative structure that does not involve any 
derivatives with respect to y,  and for its construction we can treat y as the constant 8 .  
For the second component, ay i2 = ayy = 1 .  Again we need only construct a deriva
tive structure for a constant. In a similar way, the derivative structure for any of the 
independent variables can be constructed recursively. Indeed, x/n,ml = (a1 , a2) is de
fined as follows: If j < m, then a1 is defined by a recursive construction of Xj [n ,m- IJ 
and a2 is a derivative structure for the constant 0. If j = m, then a1 is constructed as 
a constant derivative structure, with whatever value was assigned to Xj , and a2 is the 
derivative structure for the constant 1 .  And if j > m, a1 is again a constant derivative 
structure with the value of x j ,  but a2 is the derivative structure of the constant 0. 

This is the construction used to define DS-Make-Var in the sample computation 
presented earlier. In fact, if you review that computation, you will see that we have 
now defined every operation that appears there. The automatic differentiation system 
is complete. With algorithms for constructing derivative structures for independent 
variables and constants, and definitions of derivative structure operations and elemen
tary functions, nothing more is needed. However, we have yet to see any verification 
that the system actually works. How do we know, for example, that the arithmetic defi
nitions propagate derivatives correctly? How do we know that applying an elementary 
function to a derivative structure as in Definition 4 produces the desired derivative 
information at the end? For that matter, how do we even know that the recursive defi
nition for pn.mJ is correct? The next section will address these questions. 

Validation of the system 

There are two aspects of the system that require validation. First, we have to verify 
that the recursive definition of f[n,ml properly represents the intuition suggested by the 
triangle and pyramid examples. Second, it must be established that the definitions of 
derivative structure operations correctly propagate derivative information. That is, we 
must see that 

and 

j[n ,m] + g[n ,m] = (j + g) [n ,m] 

j [n ,m] _ g[n ,m] = (j _ g) [n ,m] 

j [n ,m] X g[n ,m] = (jg) [n ,m] 
(6) 

(7) 
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For both of these ends, expressing a derivative structure a as an ordered pair 
(a 1 , a2) and referring to the components and to a; will be of central importance. 
It simplifies the presentation to express these substructures using an operator no
tation. Thus, if a = (a1 , a2) is a derivative structure, we define V (a) = a1 and 
D(a) = a2 . The names of these operators reflect the meaning of the components 
in the one-variable/one-derivative system, where a1 is the value of the function, and a2 
is the derivative. Recall that af is obtained from a by removing all the highest order 
derivatives, so that af is a lower order version of a .  Accordingly, we use the notation 
L(a) = af . 

Although the conceptual meaning of the operators is clear, formal definitions will 
be given for completeness. For L ,  this is particularly important as there has not yet 
been given an abstract definition in terms of derivative structures. 

DEFINITION 6 .  Let a E DS(n ,  m) . If n = 0 or m = 0, a is a real number and 
V (a), D(a), and L (a) are all defined to equal a. Otherwise, a =  (a1 , a2 ) .  In this case, 
we define V (a) = a1 , D(a) = a2, and L (a) according to 

ifm = 1 
ifm > 1.  

It  may not be immediately apparent that this definition of L is consistent with the 
earlier explanation of a; .  The reader may wish to verify that the definition works cor
rectly for triangles and pyramids. However, for the arguments that will follow, it is not 
logically necessary to connect the definition of L with the conceptual image of f[n ,mJ . 
Instead, we will be content to take L (a) as the definition of a; ,  and show that this 
definition has the properties we need for automatic differentiation. 

The three operators provide the means to connect the abstract definition of D S (n , m) 
to the ideas illustrated by the derivative vectors, triangles, and pyramids. As a first in
stance of this, we have the following result. 

THEOREM 1 .  Derivative structures for functions are related to the operations V, 
D, and L as follows: 

V (f[n ,m] ) = f[n- l ,m] 

D(f[n ,ml ) = (an f) [n ,m- 1 1 

L (f[n ,m] ) = f[n ,m- 1 1 . 

If the derivatives in fln ,ml are laid out as in the examples of triangles and pyramids, 
these identities are obvious. However, it is possible to prove the identities using only 
the abstract definitions of the operators and of fln ,mJ . In fact, the first two identities are 
immediate consequences of the abstract definition of fln ,ml .  The third identity can be 
proved by a straightforward induction argument that exploits the recursive definitions 
of both fln,mJ and L. This same style of proof is effective for a number of the results 
to follow, and while a detailed proof for the third identity above will not be given, a 
sample proof will be given for a later theorem. In any case, it is important to note that 
the induction proof uses only the abstract definitions of L and fln,ml , and so makes no 
direct use of the full image of how partial derivatives are laid out in pn.ml . Thus, the 
fact that the third identity can be established by an abstract proof confirms that, at least 
in this regard, L and fln ,ml operate according to expectation. 

Theorem 1 lends itself to a simple formal algorithm for applying V, D, or L 
to fln ,ml :  V decrements the variable index by 1 ;  L decrements the derivative index 
by 1 ; and D both decrements the derivative index and differentiates f once with re-
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spect to the nth variable .  Using just the first two of these rules we can prove the next 
result. 

THEOREM 2. Suppose pn.ml is defined at x. Let ej be a nonnegative integer for 
1 s j s n with L ej s m. Then the partial derivative a�] . . .  a�n f (x) can be obtained 
from f[n ,ml (x) as follows: If L ej = m then 

otherwise 

a�1 • • • a�n f (x) = D'� V De2 V . .  · V De" f[n ,ml (x ) ;  

The proof is simply a matter of applying the identities in Theorem 1 .  Rather than 
present the details in a formal way, it will be more illuminating to work through 
an example. Consider the derivative structure jl3•61 and suppose we want to obtain 
afa2aif (x) . Since this is a fifth derivative and m = 6, the theorem says to compute 
V D2 V DV  D2 j l3 •61 . We can verify that the desired result is obtained by applying the 
identities in Theorem 1 as follows: 

V D2 V DV D2 f[3 • 61 (x ) = V D2 V DV (aif) [3 '41 (x) 

= v D2 V D (aif) [2'41 (x ) 

= v D2 V (a2aif) [2' 31 (x )  

= VD2 (a2ain[' . 31 (x )  

= v ca�a2ain [' . ' 1 (x )  

= ca�a2ain[o. ' 1 (x )  
= a�a2aif (x) . 

This example reveals the general nature of the algorithm for extracting a particu
lar derivative from f[n ,ml . Notice that the D operator only performs differentiation of 
f[n,mJ with respect to Xn . But each time we apply V,  we reduce the value of n, and 
hence change the variable that D differentiates. If we want a certain number of deriva
tives with respect to Xn , we apply D that many times. Then we apply V, in effect, 
shifting the focus to Xn-i · If we want one or more derivatives with respect to Xn-i , we 
apply D that many times again. So we continue, alternately applying D to differenti
ate and V to shift to a new variable, until all the desired derivatives have been applied. 
For an mth derivative, there will be m applications of D, reducing the derivative index 
to 0, and so reducing the derivative structure to a real number. Otherwise, there will 
be exactly n applications of V. This will reduce the variable index to 0, and so again 
result in a real number. 

It should be stressed again that the operators V and D were defined completely 
abstractly, with no reference to derivatives. In a computational system, a particular 
derivative structure is simply an organized network of memory locations which store 
real values. The algorithm above navigates through such a network to a particular 
entry. Theorems 1 and 2 show that when a derivative structure is constructed according 
to the abstract definition of f[n ,ml , the desired derivative values can all be located and 
extracted. More specifically, visualizing the network as a binary tree, each application 
of V selects a left branch from a node, each application of D selects a right branch, and 
after either m applications of D or n applications of V a terminal node is reached. Thus, 
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Theorem 2 can be understood as a prescription for finding the appropriate terminal 
node for a particular partial derivative. 

To complete the validation of the system, we must see that derivative structure op
erations really do succeed in constructing f[n,m J .  That is, we must verify (6) and (7). 
The formal statement is given in the following theorem. 

THEOREM 3 .  Let f and g be real valued functions of n or more variables, with 
continuous partial derivatives through order m, let x be in the domain of f and g, 
let r be a real number, and let 4> be a real function m times differentiable at f (x ) .  
Then the following identities hold: 

f[n ,m] (x ) + g[n ,ml (x) = (f + g) [n ,m ] (x) 

f[n ,ml (x) _ g[n ,ml (x ) = (f _ g) [n ,m] (x) 

rf[n ,ml (x ) = (rf)[n ,m] (x ) 

f[n ,m] (x ) X g[n ,ml (x ) = (fg) [n ,m] (x) 

(j> (f[n ,ml (x)) = (¢ 0 f) [n ,ml (x) .  

As mentioned earlier, the recursive nature of the definitions makes induction a nat
ural approach to proving results like these. To illustrate, here is a proof of the final 
identity above. It assumes that the preceding identities have already been established. 

Proof. The proof is by induction on n + m .  If either n or m is zero, the conclu
sion holds trivially. So assume that both n and m are positive, and that the conclusion 
holds for pn' ,m' J whenever n' + m' < n + m .  From the definition of 4> for derivative 
structures, if f[n ,ml (x) is expressed as the pair (a1 , a2) ,  then 

In terms of the V, D, and L operators, this becomes 

Applying Theorem 1 we obtain 

Now we are ready to use the induction hypothesis. On the right side of the preced
ing equation, the real functions 4> and ¢' are applied to derivative structures with lower 
order than f[n ,mJ (x) . By induction, we can bring 4> and 4>' inside their respective paren
theses, leading to 

Similarly, the identity for derivative structure multiplication allows us to bring the 
product on the right side of the equation inside the parentheses. Performing that reduc
tion and recognizing the normal real function chain rule then produces 

4> (/[n ,ml (x)) = (<4> 0 f) [n- ! ,m] (x) , (¢' 0 f . ann[n ,m- ! ] (x )) 
= ( (¢ o f) [n- ! ,ml (x ) ,  [an (¢ o f)] [n ,m- ll (x)) 

= (¢ 0 f) [n ,ml (x) .  

This shows that the identity holds for f[n ,m l ,  completing the induction argument. • 
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This concludes the validation of the recursively defined automatic differentiation 
system. It has been demonstrated that the simple recursive definitions for derivative 
structure operations properly propagate partial derivatives. To put it more simply, we 
have seen that the recursive automatic differentiation system works. In a final section, 
we discuss a few ideas connected with implementation and computational efficiency. 

I mplementation and efficiency 

The recursive automatic differentiation system presented here can be implemented in 
any computer programming language that supports recursion. A working version is 
described in [6]. There, the interested reader will find LISP code for the entire system, 
amounting to about 1 50 lines. Although the presentation in [6] is from a different point 
of view than the double recursion described here, the LISP code can be considered an 
implementation of either point of view. In fact, the double recursion described here 
was discovered as a direct result of studying the implementation in [6]. It should also 
be mentioned that the original idea for treating the number of derivatives recursively 
is due to Neidinger [8]. His work provided a critical inspiration for both the approach 
of [6] and the double recursion presented here. 

It is beyond the scope of this paper to discuss the LISP implementation in detail. 
However, there is one aspect that is worth considering. The programming for the 
automatic differentiation system must include derivative structure formulations for 
all the familiar elementary functions: exponential, sine, cosine, etc. Each of these is 
programmed according to Definition 4. Interestingly, this definition can be imple
mented quite generally, and then used to create the procedures for all the desired 
elementary functions. The basic idea is to define a procedure that will combine 
the original function </J, the derivative </J', and the derivative structure a to com
pute </J (a) .  For the sake of discussion, let us call the procedure Comp o s e .  It will take as 
arguments procedures phi and phi -pr ime , and a derivative structure a. If a is ac
tually just a real value, Compose applies phi to a and returns the result. Otherwise, 
Comp o s e  uses the V,  D, and L operators to compute a 1 ,  a2, and a i * ,  respec
tively. Then it applies phi to a 1 ,  phi -prime to a 1 * ,  and returns the ordered pair 
(phi ( a 1 ) , phi -pr ime ( a 1 * )  * a2 ) .  

All of the elementary functions are defined in terms of the procedure Comp o s e .  For 
example, here is what the definition of the derivative structure exponential function 
might look like: 

Funct i on DS-Exp ( a )  
i f  a i s  real 

return exp ( a) 
e l s e  

return Compo s e (DS-Exp , DS-Exp , a )  
end 

Note that DS-Exp plays the role of both phi and phi -pr ime in the call to 
Comp o s e .  Thus, the computation of DS-Exp ( a) requires evaluations of DS -Exp ( a 1 ) 
and OS-Exp ( a1 * ) . This is simply a direct implementation of the recursive nature of 
Definition 4. In a similar way, the reciprocal function is defined as follows: 

Funct i on DS-Re c ip ( a) 
i f  a i s  real 

return 1 / a  
e l s e  
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return Compo s e (DS-Re c ip , DS -DRe c ip , a) 
end 

2 0 1  

Here, DS-DRe c ip is a derivative structure function that plays the role of the 
derivative of the reciprocal function. That is, with � (x) = 1 I x , the derivative is 
�' (x) = - 1  I x2 • This can be defined by 

Funct i on DS-DRe c ip ( a) 
r e c ip-a = DS-Re c ip ( a) 
return - 1  * r e c ip-a * r e c ip-a 

And now that we have defined the reciprocal function, it  is no problem to add the 
natural logarithm. 

Funct i on DS-Ln ( a) 
i f  a i s  real 

return ln ( a) 
e l s e  

return Comp o s e (DS-Ln , DS-Re c ip , a )  
end 

As these examples suggest, the development of a complete automatic differentia
tion system requires very little programming, once the derivative structure operations 
are in place. For each elementary function that is included, the developer does have to 
explicitly specify the derivative. However, that is a small price to pay for the automatic 
generation of derivatives to essentially arbitrary order. And in any case, one cannot 
reasonably hope to avoid defining derivatives altogether in a system that is supposed 
to compute derivatives automatically. In comparison to other approaches to automatic 
differentiation for higher derivatives [2, 7], the development presented here is remark
ably simple. 

This simplicity streamlines the task of implementing an automatic differentiation 
system. How the system performs is quite another issue, and it turns out that the ele
gance of the recursive approach is accompanied by some significant sources of inef
ficiency. While we will not take up this issue in any significant way here, a few brief 
comments are in order. 

A little reflection reveals that a naive implementation of the doubly recursive ap
proach involves widespread recomputation of previously obtained results. To illustrate 
this idea, consider the third derivative of the product fg. We know by Leibniz' rule 
that 

(fg)"' = !"' + 3f"g' + 3f'g" + g"' . 

This can be derived by repeatedly applying the product rule, and then algebraically 
simplifying the result. In particular, three different terms, each equal to f" g' , would 
appear, giving rise to the single term 3 f" g' in Leibniz'  rule. The recursive automatic 
differentiation system is similar to repeatedly applying the product rule without alge
braic simplification. That would entail three separate evaluations of f" g' . 

In contrast, Neidinger [9] has developed a multivariate automatic differentiation 
system that uses explicit looping and subscripting. This system avoids the recompu
tation that can arise in the recursion process, and should be expected to outperform a 
direct implementation of the design presented here. 

Inspired by Neidinger's approach, there are obvious strategies for reducing some 
of the recursive approach's inefficiency. In particular, a carefully optimized multipli
cation procedure, based on Leibniz'  rule rather than simple recursion, might make a 
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significant impact. Another attractive idea is to identify and exploit redundant calcu
lations in the recursion process. Yet another improvement would be to take advantage 
of sparseness, eliminating computations that ultimately lead to multiplication by zero. 
Whether a modified version of the recursive system would be competitive with Nei
dinger's system is a question for further study. 

However, no matter what formulation is used, direct computation of all partial 
derivatives of an expression is simply not the fastest approach. A more efficient al
ternative is to use systems of univariate automatic differentiation computations and 
an interpolation scheme [1] .  Although this does increase memory requirements, it is 
easily shown to produce huge reductions in execution for large scale systems. Thus, 
for example, in a system with several hundred variables and a need for third order par
tial derivatives, any direct computation of all partial derivatives would be much slower 
than the alternative using interpolation. 

On the other hand, computational speed is not always an issue. An automatic differ
entiation system of the type described here has been used successfully in an interactive 
application for analyzing systems of constraints arising in the design of satellite sys
tems. In that context, automatic differentiation was used to perform sensitivity analyses 
among dozens of variables. For this application, computation was limited by the speed 
of user input, not by the speed with which the automatic differentiation system op
erated. In that situation, the speed of the automatic differentiation system was of no 
concern at all . 

More generally, as computational speed continues to increase, the importance of 
execution efficiency will continue to decline, particularly for problems with small 
numbers of variables. In these cases, the directness and simplicity of the current de
velopment offers an attractive paradigm for implementing an automatic differentiation 
system. 

Acknowledgment. This paper is based on an invited address at the January 1 997 AMS/MAA meeting [5] . 
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In her note in the February 2001 issue of this MAGAZINE, "Avoiding Your Spouse at 
a Bridge Party," Barbara H. Margolius [ 4] addresses the Bridge Couples Problem, a 
question originally considered in terms of dancing by James Brawner a year earlier 
("Dinner, Dancing and Tennis, Anyone?" this MAGAZINE, February 2000 [2]) : 

THE B RIDGE COUPLES PROBLEM . Suppose n married couples (2n people) are 
invited to a bridge party. Bridge partners are chosen at random, without regard to 
gender. What is the probability that no one will be paired with his or her spouse? 

I see no reason to avoid only my spouse. In addition to a wife, I have two children, 
and we would all like to avoid each other. Presumably, there are other families of four 
in this situation. Thus we will consider the following problem: 

THE B RIDGE FAMILIES PROBLEM . Suppose n families of four (4n people) are 
invited to a bridge party. Bridge partners are chosen at random, without regard to 
gender or generation. What is the probability that no one will be paired with a member 
of his or her family? 

Note that the Bridge Families Problem is different from the generalization of the 
Bridge Couples Problem that Margolius offered as an exercise at the end of her article. 

The Bridge Families Problem can also be interpreted as a problem arising in the 
playing of the card game War. War is played by thoroughly shuffling a standard deck of 
52 playing cards and dealing 26 cards to each of two players. The players then compare 
the top cards in their hands, with both of those cards going to the player with the higher 
ranking card. Play continues in this fashion until each player has played all of his or 
her 26 cards. In the case of a match (sometimes called a "battle"),  that is both players 
turning over cards of the same rank, additional rules exist concerning how to proceed. 
However, we will not be concerned with that issue here. Neither will we consider plays 
beyond the first 26, though in the traditional game of War, play generally extends well 
beyond going through the deck once. In terms of War, the Bridge Families Problem 
becomes: 

THE PROBLEM OF WAR WITHOUT BATTLES . Suppose a well-shuffled deck con
sisting of 4n cards ( 4 distinguishable cards of each of n linearly ordered ranks) is dealt 
to two players so that each player has 2n cards. What is the probability that when the 
players play through their decks and compare the cards, there are no matches? 

We choose to use the language of cards over that of families because cards in a deck 
come with an obvious ordering by rank. This ordering allows for many additional 
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interesting questions, some o f  which have been investigated by two o f  my students 
in their undergraduate research projects and honors theses. Here we will answer the 
following question, which is closely related to the Problem of War Without Battles :  

THE ANNIHILATION PROBLEM . What is the probability that in  a game of War 
with a deck of 4n cards, player 1 annihilates player 2 (that is, has a higher ranking card 
in all 2n plays)? 

The Annihilation Problem is of particular interest to me since I was once almost 
annihilated by one of my children (he won all but the last card) ! As we shall later 
see, the probability of being annihilated when using a standard deck of cards, and the 
probability of being almost annihilated in this fashion, are both less than 300•0�0•000 . 
Thus, I am left wondering just who shuffled the deck before that ill-fated game. 

Computing the probability of k matches We envision the deal of the cards as a 
2 x 2n rectangular array, with the cards of player 1 in the first row, and those of player 2 
in the second (see FIGURE 1 ) .  A match then corresponds to two cards of the same rank 
in the same column. Thus in FIGURE 1 there are four matches shown, J<> and J.t., 
3<:? and 3•, J• and JC?, and 8.t. and 8 •. Note that there are two matches involving 
jacks; we will call such a situation a double match. The presence of the (unmatched) 
3.t. and 8<:>, indicates that the 3s and 8s are single matches. 

3.t. 5. J<> 7. 3<:? QC? KC? 4.t. J. 5<> 6.t. 2<:? A. 8.t. 4. 
7<> 8<> J.t. Q.t. 3• 6• so 2.t. JC? 7.t. 2<> 9.t. 9<:? 8• K<> 

Figure 1 A poss ib le  dea l of the cards for a standard deck (n = 1 3 ) 

It is the potential for double matches that makes computing the probability of k 
matches an interesting generalization of the Bridge Couples Problem. Since there are 
4n distinguishable cards being placed into 4n positions in the array, there are ( 4n) !  
possible deals. Let k be a fixed integer, 1 ::=: k ::=: 2n . We will compute the probability 
of a deal with at least k matches, then use the inclusion-exclusion principle to compute 
the probability of a deal with exactly k matches .  

If we have k matches, some may be doubles. We let m be the number of double 
matches, and r be the number of single matches. Thus 2m +  r = k, and we must 
consider all possible values of m from m = 0 to m = Lk/2J . Note, for example, that 
in a standard deck of 52 cards (where n = 1 3) ,  if we let k = 20, we will need at 
least seven double matches. In general, the smallest possible value of m will be the 
maximum of the set {0, k - n} . To count the number of deals with at least k matches, 
we first observe that there are ek

n) ways to specify which positions contain the matches .  
We then select the r ranks for single matches, choose two of each of those four cards 
for the match, and choose which of those cards goes to each player. This stage results in 

G) G) ' . 2r = G) . 1 2r ( 1 )  

possibilities. Next, from the remaining n - r ranks w e  choose the m ranks involved in 
the double matches, split the four cards of each of those ranks into an unordered pair of 
unordered pairs, and choose which card goes to which player in each of the resulting 
2m pairs. This next stage of our process results in 

(2) 
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possibilities .  Finally, the k pairs we have chosen can be put into the k specified po
sitions in k! ways, and the remaining 4n - 2k cards can be put into the array in 
(4n - 2k) ! ways. Thus, for a fixed m,  the number of deals that have at least k matches 
in specified positions is the product of k! (4n - 2k) ! and formulas ( 1 )  and (2) : 

· 1 2m+r · k !  (4n - 2k) ! = . 

(n) (n - r) 12k-m · k !  n !  (4n - 2k) ! 
r m m ! (k - 2m) ! (n - k + m) !  

(3) 

Thus the probability of a deal with at least k matches in specified positions is 
given by 

l � J  1 2k-m · k !  n !  (4n - 2k) ! 

m=m�,k-n) m !  (k - 2m) !  (n - k + m) ! (4n) !  

l � J  1 2k · k !  n !  (4n - 2k) ! 
(4n) ! 

1 
L 1 2m · m ! (k - 2m) ! (n - k + m) !  

m=max(O,k-n) 

We are now in a position to solve the Problem of War Without Battles. We will find 
the probability of no matches, Po,n , by computing the probability of the complement, 
at least one match. Keep in mind that, for example, the event of a match in the first 
position, and that of a match in the second position are not disjoint. Thus we cannot 
find the probability of at least one match by simply evaluating our formula above when 
k = 1 .  Instead, we use the inclusion-exclusion principle; we include all the nondisjoint 
possibilities with one match, then subtract off the overlapping possibilities with two 
matches, and so on. Since there are e;) ways to specify the k positions in which there 
are matches, inclusion-exclusion tells us that the probability of at least one match is 
Pl* ,n = 

f ( k+ l (2n) 12k · k ! n !  (4n - 2k) ! � 1 

) k= l 
(- 1 )  

k (4n ! ) ·
m=max(O ,k-n) 1 2m · m ! (k - 2m) ! (n - k + m) !  

. 

(4) 
(The asterisk in p1 • ,n signifies that this is the probability of at least one match.) 

Hence, the solution to the Problem of War Without Battles is Po,n = 1 - P1 • ,n . 
At this point, we pause to answer the Annihilation Problem. Since the Annihilation 

Problem does not consider situations involving battles, we need only determine the 
probability that player 1 has a higher ranking card than player 2 does in each of the 
2n plays, given that there are no matches. Since all deals are assumed to be equally 
likely, this probability is quickly seen to be 1 j22n , so that the probability of annihi
lation is Po,n j22n . When n = 1 3 ,  we compute that for a standard deck of cards, the 
probability of no battles is approximately 0.2 10214, and the probability of my annihi
lation is 0.2 10214/226 � 3 . 1 3243 x w-9 •  Note that under the same assumptions, the 
probability that player 1 has a higher ranking card in all but the last of the 2n plays is 
also 1 /22n . Thus the probability of my almost being annihilated in this fashion is also 
approximately 3 . 1 3243 X 10-9 •  

Using more general Inclusion-Exclusion formulas (see [3, Chapter IV]) ,  w e  now 
compute the probability of exactly j matches, for any j :  pj,n = 

f ( k+l (k) 1 2k · n !  (2n) ! (4n - 2k) ! � 1 

) k=j 
( - 1 )  j (2n - k) !  (4n ) !  

. 
m=max(O,k-n) 12m · m !  (k - 2m) ! (n - k + m) ! · 

(5) 
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A s  a reality check, w e  had Mathematica use (5) to compute the probability distri
bution for a standard deck of cards, some of which is shown in TABLE 1 . 

TAB L E  1 :  The p robab i l i ty d i str ibut ion for the n umber of matches 
us i ng  a standard deck of cards. 

j 

0 
1 
2 
3 
4 
5 
6 

0.2 102 14  
0.334 1 83 
0.259336 
0. 1 307 1 3  
0.048028 
0.01 36839 
0.003 14026 

j 

7 
8 
9 

24 
25 
26 

0.000595043 
0.0000946984 
0.0000128083 

3 . 338 19  x w-25 
0 
5 .34967 x w-28 

Given the relative complexity of the formula for Pj, ! 3 • it was particularly pleasing 
to find that p25 , 1 3 = 0, which of course must be the case since it is impossible to have 
25 matches without the two remaining cards matching also. 

The asymptotic behavior of the probability of war without battles In Margolius'  
article [4] , i t  was shown that the probability that no one will be paired with his or her 
spouse converges to e- 1 12 . Here we investigate the convergence (as n ---+ oo) of the 
probability, Po,n , of no battles in a game of War with a deck of 4n cards. In TABLE 2, 
values of Po,n . as computed by Mathematica for increasing n ,  are displayed. 

TABLE  2: The probabi l i ty of zero matches i n  a game of War with 
d i fferent s i zed decks of cards. 

n Po,n n Po.n 
1 3  0.2 102 14  50 0.2 19779 
20 0.2 14742 100 0.22 1456 
30 0.217542 500 0.222795 
40 0.21 8941 1000 0.222963 

Note that although convergence is slow, appearances certainly indicate that the se
quence is increasing, and in this case, since the sequence is bounded above by 1 ,  a 
limit must exist. The interested reader might wish to make a conjecture as to the limit 
before reading further. (Hint: the limit involves e.) 

THEOREM.  The limit of the probability of no battles in a game of War with cards 
of n different ranks is 

lim Po,n = e-312 � 0.223 1 30. 
n->oo 

Proof The presence of the double summation and the floor function in  formula (4) 
makes finding the limit of the Po,n directly from that formula somewhat difficult, so 
we take a different approach. We will first compute the probability, q1• ,n , of having at 
least one double match. Using (3), with k = 2 and m = 1 ,  choosing two positions to 
contain the double match, and noting that we're overcounting, we find that (2n) 1 2  · 2 · n !  (4n - 4) ! 6n (2n - 1 )  

q! * n < = . ' - 2 (n - 1 ) ! (4n) ! (4n - 1 ) (4n - 2) (4n - 3) 



VOL.  75,  NO. 3 ,  J U N E  2002 207 
Therefore, 

lim qi* , n = 0. 
n->oo 

Since the probability of  a double match goes to  0 ,  we may evaluate the limit of  the 
probability of no battles in a game of War by using (4) with the inner sum evaluated 
only at m = 0. Doing so yields 

n !  (2n ) !  (4n - 2k) ! 
(n - k) ! (2n - k) ! (4n) ! 

A formal argument using epsilonics (similar to that used by Margolius [4]) now 
shows that 

1 . 1 -3/2 1m Pi* ,n = - e . 
n->oo 

However, we choose to  note that one can see this result more informally by observing 
that 

n !  (2n ) !  (4n - 2k) ! n (n - 1 )  · · · (n - k + 1 )  · 2n (2n - 1 )  · · · (2n - k + 1 )  
(n - k) ! (2n - k) ! (4n) ! 4n (4n - 1 )  · · · (4n - 2k + 1 )  

s o  that for fixed k, 

Thus, 

1 . n !  (2n) ! (4n - 2k) ! 
lm ---------------

n->00 (n - k) ! (2n - k) ! (4n) ! 

Suggestions for further investigation In [1], Blom, Holst, and Sandell consider 
(among other problems) the "matching Sing-Sing problem." This problem is equiva
lent to the Bridge Couples Problem. Blom, Holst, and Sandell prove that as n --+ oo, 
the probability distribution of the number of matches approaches a Poisson distribu
tion with parameter A = 1 /2. Given the result of our theorem, the obvious conjecture 
is that in the Problem of War Without Battles, the probability distribution of the num
ber of matches approaches a Poisson distribution with parameter A = 3/2. Is this the 
case? Numerical evidence at least indicates this is plausible. For example, in TABLE 3 ,  

TABLE  3 :  A compar ison of  the  p robab i l ity d i str ibut ions of  the  n umber of  matches for 
n = 1 3  with the Poi sson d i str ibut ion with parameter A. =  3 /2. 

j Pj, i3 P (j ; 3/2) j Pj, i 3 P (j ;  3/2) 

0 0.2 10214 0.223 1 30 7 0.000595043 0.000756426 
1 0.334 1 83 0.334695 8 0.0000946984 0.000141 830 
2 0.259336 0.25 102 1  9 0.0000128083 0.0000236383 
3 0. 1 307 1 3  0. 1 255 1 1  
4 0.048028 0.0470665 24 3 .338 19  x w-25 6.05401 x w-2' 
5 0.01 36839 0.0 14 1200 25 0 3 .63240 x w-n 
6 0.003 14026 0.00352999 26 5 .34967 x w-28 2.09562 x w-23 
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w e  compare the probability distribution for the number o f  matches playing with a stan
dard deck of cards (from TABLE 2) with the probabilities from the Poisson distribution 
P (j ;  3/2) . 

In the annihilation problem, we considered only the case that player 1 had a higher 
ranking card than player 2 in each play. What if we allow matches, and adopt the 
convention that if there is a match, the winner of the next play takes all four cards? 
What if we adopt the standard convention that in the event of a match, each players' 
next three cards are placed face down, and their fourth cards are compared, with the 
winner taking all ten cards involved? What are the probabilities of annihilation in these 
cases? Here, "annihilation" means player 2 doesn't win any cards during the course 
of play. Numerous generalizations can be investigated. What if we play with a deck 
consisting of six cards per rank? What about m cards per rank? What if m is odd? 
Finally, what if, as often seems to be the case in my family, we're not playing with a 
full deck? 

Acknowledgment. The author would like to thank the two anonymous referees for their comments. This paper 
was substantially improved by their suggestions. 
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The academic life of the Bernoulli family was always surrounded by controversy. The 
disputes between Johann (John) and his older brother and former teacher Jacob and 
with his son Daniel are famous and well documented. An interesting discussion of 
this remarkable family is found in Section 1 2.6 of [3] . After the death of L'Hopital, 
John claimed the authorship of his classical analysis book. In the controversy between 
Leibniz and Newton about the creation of calculus, he stood on Leibniz' side. His 
controversial positions were not restricted to mathematics: he was even accused of 
denying the possibility of the resurrection of Christ. 

In the course of our study of the history of elliptic integrals, we found a paper by 
Johann Bernoulli [1] which, in our opinion, both illuminates the calculation of arc 
lengths of smooth curves, a topic covered in most undergraduate calculus programs 
around the world, and provides an additional tool for producing new and interesting 
examples of rectifiable curves. According to Bernoulli, these are curves whose arc 
length can be expressed as elementary functions of their end points . The paper contains 
a main theorem that is perfectly valid even today, and admits a nice interpretation in 
terms of the notion of radius of curvature. Furthermore, we discovered in it a colorful 
antecedent of Landen integral transformations [2] . 

Let y = y (x ) be a differentiable function defined on [a , b] . Then its arc length is 
defined by 

In general, this integral is not trivial. The examples and exercises provided in most text
books look unnatural: for instance, the first example given in Thomas [4] , page 395, 
deals with the arc length of the curve 

y = 4J2 x3f2 - 1 
3 

for 0 ::: x ::: 1 .  This is an easy example in the sense that it is computable : 

g ( 1 ) = J1 + 8� d� = - .  11 1 3 
0 6 
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The reader can easjly verify that the integral corresponding to the length o f  a circle 
can be evaluated. However, the calculation of the arc length of an ellipse leads to the 
integral 

1' ) '
- e'l;' 

L (x) = a  2 d� , 
0 1 - � 

where a is the sernimajor axis of the ellipse, and e its eccentricity. This last integral is 
one of the fundamental elliptic integrals and is not an elementary function. It was the 
starting point of our research on Bernoulli 's  work. 

Bernoulli 's universal theorem The main goal of this section is to present Bernoulli 's 
result on how to produce rectifiable curves, which in this sense might also be called 
rectifiable by straight lines; their arc length can be expressed as elementary functions 
of their end points� 

THEOREM 1 .  Let y = y (x) be a twice differentiable function satisfying (dy ) 2 dy d2y 
- + 3x - -- > 0 ( < 0) 
dx dx dx2 - -

in its interval of definition [a , b ]. Define a new curve with coordinates 

y 
= 

3x (dy ) 2 _ !  lx (dy ) 2 
d� . 

2 dx 2 a d� 

Now let g (x) and G (x) be the arc lengths ofy and the parametric curve (X (x ) ,  Y (x)) 
starting at x = a. Then 

for all x E [a , b]. 

(d )3] /;=x , g(x) + (-) G (x) = � 
d� /;=a , 

Proof First observe that 

Following Bernoulli 's recommendation, we compute 

[ ] 3/2 [ ] 1 /2 
d d 3 d 2 d 2 d d2 
-x 

(....!) = 1 + 
(_z) + 3x 1 + 

(_1'_) _z _2: .  
dx dx dx dx dx dx2 

On the other hand, careful differentiation shows that 

G(x) = lx (*Y + (�;y d� 

= 1x 1 + (��Y I (��Y + 3x����� � d� . 

To conclude the proof, note that the integrand of g(x) + (-) G (x) is fxx (�� )3 , so the 
result follows from the Fundamental Theorem of Calculus . • 
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For example, the function y = ln x yields 

1 
X = ---z . X 

2 1 1 
y = - - - = 2,fi - - . 

x2 2 2 

2 1 1  

After struggling to get the correct constants in some assertions in Bernoulli 's article, 
we discovered a nice interpretation of Theorem 1 .  This formulation eluded Bernoulli 
as he did not relate the result to the curvature of the graph y = y (x ) .  Recall that the 
radius of curvature of the graph y = y (x) at a point x is 

This is the radius of a circle whose curvature matches that of the curve at the given 
point. Let us restate the previous theorem in terms of curvature. 

THEOREM 2 .  Under the assumptions of Theorem 1, 

d2 ] �=X 
g(x) ± G(x) = � 

d�
� R(�)  

�=
a .  

Geometrically, denote respectively by C(a) ,  C (x) the centers of the osculating 
circles at the points A (a) = (a , y (a) ) ,  A (x) = (x , y (x)) on the curve. Also, let 
a (a) = LBAC(a) ,  a (x) = LBAC(x) be the corresponding angles between the radii 
of curvature R(a) = CA(a) ,  R (x) = CA(x)  at these points and the hypotenuses of 
some right triangles ABC(a) , ABC(x) as sketched as in the figure below. The posi
tions of points B(a) and B(x) along the rays shown are determined by the angles a (a) 
and a (x) ,  respectively. Then 

y 

CB(a) = R(a) tan a (a) ,  CB(x) = R (x)  tan a (x ) .  

A (a) 

a x 

Figure 1 Geometr ic i nterpretation 
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In order to get the rectification, set 

d2y ] tan a (a)  = a -2 
, 

d� �=a 

d2y ] tan a (x)  = x -2 . 
d� �=X 

In this way, 

g(x) ± G(x) = CB(x) - CB(a) 

gives a new meaning to Theorem 2: the sum (difference) of the arc length integrals 
equals the difference of two straight segments . Bernoulli was proud to declare that this 
sum (difference) could be measured on a straight line. 

Parabolas In Bernoulli 's language, a parabola is a curve defined by the function 
y = xq , for q a rational number. In this section we discuss parabolas that are recti
fiable by the above method. Remember that a curve y = y (x) is rectifiable if its arc 
length integral admits an antiderivative in terms of elementary functions .  Bernoulli 
was interested in the question of rectifiable parabolas and was aware of the following 
result. 

2n+ 1 
THEOREM 3 . Let n be a nonzero integer. Then the parabola y = x 2n is rectifiable 

on [0, 1 ] .  

Proof The arc length is 

g (x) = 1x 
1 + (2n

2
: 1 ) 2 � 1/n d� , 

and the substitution u (�)  = 1 + e�;J ) 2� J jn yields 

( 2n ) 2n lu(x) 
g(x) = n -- Ju(u - 1t-1 du , 

2n + 1 1 

which can be evaluated by expanding (u - on- I using the binomial theorem. • 

The reader may recognize that this result is the source of most arc length exercises 
in textbooks. Our first example corresponds to n = 1 .  Moreover, the presence of the 
factor 4-Jl/3 is not essential to the solution of the problem: it is window dressing. 

We can now use Theorem 1 to assert that every parabola can be rectified by adding 
the arc length of another (conveniently chosen) parabola. 

THEOREM 4 .  Any parabola y = xq , q =F 2/3, can be rectified by adding (sub
tracting) to its arc length the arc length of the auxiliary parabola 

3q - 2  1 � 
y = ---q 2=3tJ X 3q-2 , 

2q - 1 

where X = q3 x3q-2. In particular, the usual quadratic (Archimedean) parabola 
y = x2 is rectified by adding the arc length of the biquadratic-cubic parabola 
y = �2-I /4 X3f4. 

Proof Note that 

(dy ) 2 + 3x 
dy d2y = (3q - 2)q2x2(q-2l . 

dx dx dx2 

The rest of the proof is a straightforward calculation. • 
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Integral transformations Many interesting questions can be formulated at this 
point. For instance: Under what circumstances does the degree of the auxiliary 
parabola equal the degree of the original parabola ? The answer is clearly given by 
the fixed points of the rational transformation b(q) = (2q - l ) j (3q - 2) , q =I= 2/3, 
namely, q = 1 , 1 /3 .  Since the first value gives a trivial answer, Bernoulli considered 
only the second value, which corresponds to the primary cubic parabola y = x 1 13 • 
This case is important because it yields Y = X113 , and consequently 

r � r 2L / 1 
g (x) - G (x) = Jo Y 

1 + 9fl/3 d� - Jo 1 + 
9X4/3 

dX 

!X � ( 1 ) 3/2 
= _l_ 1 + 

9�4/3 
d� = x 1 + 

9x4f3 ' 
27x 

an actual arc length integral formula ! 
It is interesting to study the sequence defined recursively by p0 = q ,  Pn = bpn_ 1 , 

n = 1 ,  2, . . .  , for a given starting value q .  For example, if q = 2, then p1 = 3/4 and 
p2 = 2 (again) . This implies that if the original parabola is the usual y = x2 , for which 
X =  8x7 and Y =  �2- 1 14X314 , then 

But applying the transformation from Theorem 1 once more to the auxiliary parabola, 
we obtain X = 2-314X1 14 = x714 and Y =  2-312./X = X2 . Thus 

from which 

Finally, we may ask these questions : How many different values can a sequence Pn 
take and still lead to an arc length integral formula ? Is there any relation between the 
convergence of this type of sequence and new arc length integral formulas ? 
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Proof Without Words :  
A L i ne  th rough the l n center  of a Tr i a ng l e  

A line passing through the incenter of a triangle bisects the perimeter if and only if it 
bisects the area. 

B a 

B a 

(b - b1 + c - c1)r 
Atop = ___ 

2 __ _ 

Atop = Abottom ¢> 

A 

y 

c A 

(a + b1 + C1)r 
Abottom = 

2 

1 1 a + b + c  
a + b + c = 

2 

--Sidney H. Kung 

y 

University of North Florida 
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Several years ago one of the authors placed the following rather innocuous question 
on a group theory exam: Can a finite group have exactly two elements of order two? 
While the correct answer of "no" can be proven fairly easily by a variety of techniques, 
depending on the sophistication of the solver, the authors discovered that the general
ization from "two" to n is not as painless, nor is the answer always negative. In this 
note we investigate the answer to the question: For which n do there exist finite groups 
that have exactly n elements of order n ?  We present the details of the solution in the 
abelian case while only stating the result in the nonabelian case. 

Preliminaries For n = 1 ,  the question is easily answered since all finite groups con
tain exactly one element of order one, namely the identity element. So assume that 
n > 1 and write n = n�=I p�; where the Pi are distinct primes.  Suppose that G has 
exactly n elements of order n .  

Define an equivalence relation on the set of elements of order n by saying that 
elements x and y are related if and only if they generate the same cyclic subgroup. 
The number, k, of equivalence classes is the nurrtber of distinct cyclic subgroups of G 
of order n .  Each such subgroup of G contains exactly </J (n) = n�=I p�; - 1 (pi - 1 )  
elements of order n ,  where <P is Euler's totient function. This means that the number 
of distinct cyclic subgroups of G of order n is 

m 

- _
n
_ - n _!!!__ k - </J (n) - i= I Pi - 1 · 

Consequently, m = 1 or m = 2. If m = 1 ,  then p1 = 2. If m = 2, then p1 = 2 and 
P2 = 3. Hence we have the following: 

PROPOSITION 1 .  Let n > 1. Then a finite group G has exactly n elements of order 
n if and only if 

either n = 2a, and G has exactly two cyclic subgroups of order 2a, a ::: 1 
or n = 2a 3b: and G has exactly three cyclic subgroups of ord�r 2a 3b, a-, b ::: 1. 
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Although Proposition 1 imposes severe restrictions on the structure of a group that has 
exactly n elements of order n, we can, nevertheless, construct infinitely many such 
groups .  

PROPOSITION 2 .  If a finite group G has exactly n elements of order n and H is a 
finite group such that its order is relatively prime to the order of G, then G x H also 
has exactly n elements of order n. 

For example, i t  is easy to check that G = Z2 x Z4 has exactly 4 elements of order 4; 
and if H is any finite group such that the order of H is odd, then G x H also has 
exactly 4 elements of order 4. Therefore, we have 

COROLLARY. There exist infinitely many groups that contain exactly n elements 
of order n .  

In light o f  Proposition 2 the following definition seems natural. 

DEFINITION . Let G be a finite group with exactly n elements of order n .  We call 
G minimal if no proper subgroup of G has exactly n elements of order n .  

The abelian case Suppose that G i s  an abelian minimal finite group with exactly n 
elements of order n .  From the preceding section we have that n = 2a 3b with a :::: 1 
and b :::: 0. By the Fundamental Theorem of Finitely Generated Abelian Groups, G is 
isomorphic to the direct product of subgroups of prime power order, namely its Sylow 
p-subgroups, where p runs over the distinct primes dividing the order of G [1 ,  Theo
rem 5, Section 5 .2] .  Grouping all the direct factors for primes greater than 3 together 
into a subgroup Gm , we obtain that G � G2 x G3 x Gm , where G2 and G3 are the Sy
low 2- and 3-subgroups respectively. Since the order of an element in a direct product 
is the least common multiple of the orders of the elements in its components, it follows 
easily that G2 x G3 contains all elements in G of order n (more generally, one can de
duce this from Exercise 1 8, Section 3 .2  of [1] ,  using N = G2 x G3 and H any cyclic 
subgroup of order n ). Therefore, by Proposition 2, since G is minimal, we must have 
Gm = 1 ,  that is, G � G2 x G3 ; furthermore, by the Fundamental Theorem, the Sylow 
subgroups Gz and G3 decompose further into direct products of cyclic groups as : 

Gz � Zz X · · · X Zz X Z22 X · · · X Z22 X · · · X Zza X · · · X Zza '"-,-' 
SJ factors s2 factors sa factors 

and G3 � z3 X . . .  X z3 X Z32 X . . .  X Z32 X . . . X Z3b X . . .  X Z3b '"-,-' 
fJ factors t2 factors fb factors 

with G3 possibly being trivial. In the situation when G3 is trivial, n = 2a and G � G2 . 
When a = 1 ,  every nonidentity element in G has order two, and hence the number of 
elements of order 2a in G is 2sa - 1 ,  which is obviously not equal to 2a . For a > 1 ,  
one way to count the number of elements of order 2a is to count the total number of 
elements in G and then subtract the number of elements of order less than 2a . Now, in 
the group Z2a , there are ¢ (2a ) = 2a- I elements of order 2a . If we think of an element 
in G as a vector with an element from Z2 in each of the first s1 positions, an element 
from Z22 in each of the next s2 positions and so on, then an element of order 2a in G 
must have a generator of Z2a in at least one of the last sa positions in the vector. 
So elements of G with order strictly less than 2a may have any element in the first 
s1 + s2 + · · · + sa- I positions and must have an element of order strictly less than 2a 



VOL.  75 ,  NO. 3 ,  J U N E  2002 2 17 
in each of the last sa positions in the vector. Using these facts, we find that the number 
of elements of order 2a in G is 

2(L:%:: ksk)+(a- J )sa (2sa _ 1 ) .  

Since w e  want this to equal 2a , we get that sa = 1 ,  s 1  = 1 ,  and sk = 0 for 
k = 2, . . .  , a - 1 .  Hence, G � Z2 x Z2a . Now assume that G3 is nontrivial, so that 
b ::: 1 .  Then, equating the actual count of the number of elements in G of order 2a 3b 
to 2a 3b gives the equation 

2(L:�:: ksk ) +(a- J)sa (2sa _ 1 ) 3 (L:t;; : ktk )+(b- J)th (3th _ 1 )  = 2a 3b ( 1 )  

where w e  adopt the convention that the summation i s  zero if the upper limit i s  smaller 
than the lower limit. From ( 1 )  we see that 2sa - 1 must be a power of 3 and 3th - 1 
must be a power of 2. Therefore we have to solve the Diophantine equations 

2Sa - 1 = 3x and 

3th - 1  = 2Y . 
(2) 
(3) 

When sa is odd, 2sa is congruent to 2 modulo 3 .  So (2) is impossible modulo 3 unless 
x = 0, and hence sa = 1 .  When sa is even, we can factor the left side of (2) as the 
difference of two squares and conclude that the only solution is sa = 2. Similarly, when 
1b is even we get the solution 1b = 2; and when 1b is odd, 3th is congruent to 3 modulo 4. 
Reduction of (3) modulo 4 produces the one solution y = 1 and consequently, 1b = 1 .  
Hence, there are four cases to consider and in each case we equate exponents in ( 1 )  to 
determine if a group exists . The four cases are listed below. 

• Sa = 1b = 1 
Equating exponents in ( 1 )  we get 

a- J  
L ksk = 0 and 
k=l 

which implies that b ::: 2, s 1 = s2 = · · · = sa- J  = 12 = 13 = · · · = 1b- J  = 0 and 
11 = 1 .  Hence, 

• Sa = 2, 1b = 1 
Equating exponents in ( 1 )  we get 

a- J  
L ksk = 1 - a and 
k=l 

b- J  
L: k1k = o. 
k=l 

which implies that a =  1 and 11 = 12 = 13 = · · · = 1b- J  = 0. Hence, 

G � z2 x z2 x Z3h . 

• Sa = 1 ,  1b = 2 
Equating exponents in ( 1 )  we get 

a- J  b- J  
L ksk = -2 and L k1k = 2 - b, 
k=l k=l 

which is impossible so no group exists for this case. 
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• Sa = tb = 2 
Equating exponents in ( 1 )  we get 

a- 1 
L ksk = -a - 1 and 
k= l 

b- 1 L: ktk = 1 - b, 
k= l 

which again is impossible and no group exists for this case. 

Therefore we have proven the following: 

THEOREM 1 .  An abelian group G is a minimal finite group with exactly n > 1 
elements of order n if and only if n = 2a 3b and G is isomorphic to one of the following 
groups: 

• z2 X Z2a , a :::: 2, b = 0 
• Z2a X z3 X Z3b ,  a :::: 1 ,  b :::: 2 
• z2 X z2 X Z3b ,  a = 1 ,  b :::: 1 

Theorem 1 shows that there exists an abelian group with exactly 2a3b elements of 
order 2a 3b except when a :::: 2 and b = 1 .  We see next that these curious exceptions 
are not duplicated in the nonabelian case. 

The nonabelian case Of course from Proposition 2 we can easily manufacture non
abelian groups that have exactly n elements of order n by letting G be any of the 
groups from Theorem 1 and letting H be any nonabelian group such that the order 
of H is relatively prime to the order of G.  This construction, however, violates our 
definition of minimality. To guarantee minimality we can assume that the nonabelian 
group G with exactly n elements of order n is generated by its subgroups of order n .  
This formulation allows u s  to use generators and relations to construct such groups. 
Theorem 2 gives the complete classification of minimal nonabelian groups that have 
exactly n elements of order n .  For the details of the proof, see [2] . 

THEOREM 2 .  A nonabelian group G is a minimal finite group with exactly n > 1 
elements of order n if and only ifn = 2a 3b and G is isomorphic to one of the following 
groups: 

• (x ,  y I x2a = l = 1 , x- 1 yx = y- 1 ) x Z3b with a :=::: 1, b :::: 1 .  
• (x ,  y I x2a = y2 = 1 ,  y- 1xy = x2a- l + 1 ) with a :=::: 3 ,  b = 0. 
• Z2a x (x ,  y I x3b = y3 = 1 ,  y- 1xy = x3h- ' + 1 ) with a :::: 1, b :::: 2. 
• Qs x Z3b with a = 2, b :::: 1 where Q8 is the quaternion group of order 8 . 
• s4 X Z3b with a =  2, b :::: 1 where s4 is the symmetric group on four letters. 
• GL2 (3) x Z3b with a =  3, b :::: 1 where GL2 (3) is the group of2 x 2 invertible 

matrices with entries from the field z3 . 
• GL; (3) x Z3b with a =  3, b :::: 1 where GL; (3) is the group oforder 48, which 

has generalized quaternion Sylow 2-subgroups and contains SL2 (3), the group 
of all 2 x 2 matrices of determinant 1 with entries from the field Z3, as a sub
group of index 2. 

Open questions The following is a list of some unanswered questions for future 
investigation that have arisen from the work in this paper. 

• For a given n ,  is it possible to determine what values of m are possible such that 
a finite group has exactly m elements of order n?  What relationship can be found 
between m and n?  
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• For a given pair m and n ,  is it possible to classify all minimal finite groups having 

exactly m elements of order n and does this classification provide any insight into 
the groups themselves? 
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Let A be an n x n matrix over the complex field, n ;:: 2. An rth root of A is a matrix S 
such that S' = A .  For example, S2 = W where [ 1 - 1 ] S =  0 2 ' 

so that S is the square root of W. It is natural to ask when a matrix does or does not 
have roots. We say that A is rootless if there is no matrix S and no positive integer 
r ;:: 2 such that S' = A .  

This study started with the rather accidental discovery that the matrix 

T = [ � � ] 
is rootless .  To see this, suppose that S' = T for some r ;:: 2 and 

The null space of T ,  that is, the set of all vectors G) for which T (;) = (�) , is the set 

of all vectors of the form (�) . The null space of S is contained in that of T (which is 
a rank-one matrix), and therefore the null space of S has dimension zero or dimension 
one. It cannot be zero-dimensional, for in that case S, and hence T, would be one-to
one, and hence invertible. Thus, S@ = (�) . so that a = c = 0. We then have [ 0 b ] ' [ 0 1 ] 

0 d - 0 0 . 

It is readily shown by induction that [ 0 b ] ' _ [ 0 bdr- 1 ] 
0 d - d' 0 . 

Therefore, bd'- 1 = 1 and d' = 0, which is impossible, as r ;:: 2. 
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It i s  easy to check that our matrix T above satisfies T2 = 0 .  That is, T i s  a 2 x 2 

nilpotent matrix such that T 1 f. 0. Recall, an n x n matrix is A called nilpotent if 
As = 0 for some positive integer s :=: 2. We sought a more general result for which 
this example would be a special case : 

THEOREM 1 .  Let A be an n x n matrix over the complex field, n :=: 2. Then A is 
rootless if An- I f. 0 and An = 0. 

For the following clever proof we are indebted to one of the referees.  

Proof The proof is by contradiction. Suppose that A = S' , for r :::: 2. Then srn = 
An = 0 so that S is an n x n nilpotent matrix. It is well known that if some power 
of an n x n matrix is 0, then its nth power is zero (this will be proved independently 
below). Therefore, Sk = 0 for all positive integers k :::: n .  But we also have 

sr (n- 1 ) = An- I i= 0. 

Now n :=: 2 and r :=: 2, hence, 

n -- < 2 < r so that n _< r (n - 1 ) .  
n

-
1 - - '  

Therefore sr cn- l ) = 0 or An- I = 0, which is contrary to the hypotheses on A . Hence 
A is rootless. • 

We point out that A need not be rootless if Ak- i f. 0 and Ak = 0 for some positive 
integer k < n .  An example with n = 3 and k = 2 is the following: 

[ � � � ] 2  
= 
[ � � � ] . 

0 0 0  0 0 0  

So the right-hand 3 x 3 matrix has a square root, yet its square vanishes. 
The problem of solving the matrix equation xm = A, where A is a given matrix, 

has been examined with care. Such a solution always exists if A is a self-adjoint matrix 
(that is, A is equal to its conjugate transpose) . This is a consequence of the spectral the
orem for self-adjoint matrices [2, Ch. 5] .  But as we saw above, there do exist rootless 
matrices . If A is a nonsingular matrix (one with an inverse), solutions always exist. We 
cite the classical reference by Wedderburn [3, pp. 96-97] . Considerable attention has 
been given to special cases of A where the roots are polynomials in A . For reference, 
we cite MacDuffee [1, pp. 1 1 9-120] . 

The class of rootless matrices given in our theorem above is described in a top
down manner. We would like to add to this a bottom-up characterization which gives a 
more precise description of the shape and construction of the rootless matrices of the 
theorem. 

We say that a matrix B is upper triangular if all entries of B below the diagonal are 
zero. That is, if the biJ (the entry in the i th-row and jth-column of B) satisfy biJ = 0 if 
i > j .  A matrix B is said to be strictly upper triangular if every entry of B on or below 
the diagonal is zero (that is, biJ = 0 if i :=: j) .  Lastly, recall that the superdiagonal of 
a matrix is the collection of entries immediately above and to the right of the diagonal 
(that is, entries biJ such that j = i + 1 ) .  Then we have the following: 

THEOREM 2 .  Let A be an n x n matrix over the complex field, n :=: 2. Suppose 
that A is of the form s- 1 B S where S is an invertible matrix, and B is a strictly upper 
triangular matrix with all nonzero entries on its superdiagonal. Then A is rootless. 
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This theorem will be proved as soon as it is shown that the "top-down" characterization 
(An = 0, An- ! "I= 0) is equivalent to the "bottom-up" hypotheses of Theorem 2. That is, 

THEOREM 3 .  Let A be an n x n matrix over the complex field, n ::=:: 2. Then A is of 
the form s-'  B S where S is an invertible matrix, and B is a strictly upper triangular 
matrix with all nonzero entries on its superdiagonal, if and only if A satisfies An = 0 

and An- ! -:/= 0. 

We will prove Theorem 3 (and hence Theorem 2) by a series of lemmas. We first 
cite the well known result: 

LEMMA 1 .  Any n x n matrix A, n ::=:: 2, is similar to an upper triangular matrix. 

The proof for this may be found in many standard references, such as [2, Ch. 5] .  

Therefore, in  our study of  an n x n matrix A, we may assume that A i s  upper triangular. 
But we can say more, since we assume as well that An = 0. 

LEMMA 2 .  Suppose that A is an upper-triangular matrix such that An = 0. Then 
A is strictly upper triangular. 

Proof For any complex number ). "I= 0, the matrix A I  - A is invertible (where I 
is the identity matrix) since its inverse is )._ , I + I::�:� ). -k Ak . Thus zero is the only 
possible eigenvalue for A .  As the diagonal elements of A are its eigenvalues (since it is 
assumed A is upper triangular), the diagonal elements are all zero. Hence A is strictly 
upper triangular. • 

Let f' n denote the set of all n x n strictly upper triangular matrices. 

LEMMA 3. Let V be the product of k matrices in [' n • 1 ::: k ::: n. Then the first k 

columns and the last k rows of V are zero. 

Proof We give a proof by mathematical induction. The statement is true by defi
nition if k = 1 .  Let 1 ::: k < n. We assume our result for any product V = ( Vij ) of k 
elements of [' n . 

Let W = ( Wij ) be the product of k + 1 elements of r n . We can express W as either 
B V, or Vz B for B =  (bij ) an element of f'n and V1 , V2 each a product of k elements 
of f' n . We describe each of V1 and V2 in tum by ( vij ) .  By the inductive hypothesis 
Vij = 0 if j ::: k and i :::: n - k .  

From W = V1 B we see that the last k rows of  W are zero and from W = B V2 we 
see its first k columns are zero. We now extend this to show W is zero in column k + 1 

and row n - (k + 1 )  = n - 1 - k . 

From W = V1 B we have, for any row i 
n 

Wi,k+l = L Vijbj ,k+! = L Vijbj,k+l · 
j= l j>k 

But bj,k+! = 0 if j :::: k + 1 ,  so we have wi,k+l = 0. Thus W is zero in column k + 1 ,  

hence in its first k + 1 columns. 
Similarly from W = B V2 we have, for any column r 

n 
Wn-k- ! ,r = L bn-k- ! ,j Vjr · 

j=l 

But Vjr = 0 for j ::=:: n - k and bn-k- ! , j = 0 for j ::= n - k - 1 so that Wn-k- ! ,r = 0, 

and W is zero in row n - (k + 1 ) ,  hence zero in its last k + 1 rows. • 

As an immediate consequence of the above lemma we consider the cases k = n and 
k = n - 1 ,  and conclude: 
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LEMMA 4 .  For B E fn, Bn = 0, that is, all elements of fn are nilpotent. Further, 
let Bn- 1 = (wij ) .  Then every Wij = 0 except possibly w1n . 
We next determine the value of that w1n . Given an n x n matrix B = (bij ) let rr(B)  be 
the product of the entries on the superdiagonal: rr (B)  := fE:"f bi, i+ 1 · 

LEMMA 5 . For B E fn let Bn- 1 = (wij ) · Then WJn = rr (B) .  

Proof Again, we argue by induction on n ,  the size of  the matrix. The statement of 
the lemma is true for n = 2, since in that case 

B - [ 0 bl2 ] 
- 0 0 

. 

Suppose that the lemma is valid for all matrices in r k where k is some particular 
integer, 1 :::: k < n . We then must show that it is valid for any V E rk+1 · Suppose 
V E rk+h V = (vij ) .  Since V is a strictly upper triangular matrix, its first column and 
last row are zero. Furthermore, viz = 0 for i :::: 2 and vk+ 1 . j  = 0 for 1 :::: j :::: k + 1 .  

Hence, if w let Q be the matrix obtained from V by deleting the first row and first 
column we have 

[ � ��3 
Q = . . 

0 0 

Note that Q E rk . By construction, we have 

Vz,k+ 1 ] . 
Vk,k+ l 

0 

0 V 1 , 2 V J ,k+ 1 

V =  Q 

0 

Since the first column of V is zero, we see that [ 0 . . . 

yk- 1 � 

0 

Let vk- 1 = (wij ) .  By Lemma 4 and our induction hypothesis the entries in Qk- 1 are all 
zero except the entry in the upper right comer; that is, wz,k+ 1 = rr ( Q )  = Vz3 · · · vk ,k+ 1 · 
Note that wi,k+ 1 = 0 for 2 < i :::: k + 1 .  As the first row of V is (0, v12 , • • •  ) we see that 
the sole nonzero entry of Vk = V . vk- 1 must be the ( 1 ,  k + 1 )  entry with value rr ( V ) .  
This completes our inductive argument. • 

With this, the proof of Theorem 3 is nearly complete. Suppose A is an n x n matrix 
such that An = 0 and An- 1 -:/:- 0. By Lemmas 1 and 2 we may assume A is strictly 
upper triangular. But then by Lemma 4 the sole entry of An- 1 not known in advance 
to be zero is a1 ,n • which must equal rr (A)  = a1 ,2 • • • an- l ,n by Lemma 5, and this entry 
must be nonzero since An- 1 -:/:- 0. Therefore each ai, i+ 1 -:/:- 0 if An- 1 -:/:- 0. Similarly, if 
a matrix satisfies the hypotheses of Theorem 2, then it must also satisfy the hypotheses 
of Theorem 1 .  
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There are some further questions the reader might like to consider. We have shown 

that nilpotent n x n matrices A such that An- I =/= 0 are rootless .  Such nilpotent ma
trices are of greatest possible rank (here, rank n - 1 ) .  These have been termed in the 
literature principal nilpotents and are part of many interesting problems in matrix the
ory. All of the rootless matrices shown here are principal nilpotents, but there are 
nonnilpotent rootless matrices. The reader is encouraged to work this out to show the 
matrix 

[ b � � ]  
0 0 0 

is rootless, but not nilpotent. Also, we saw an example of a nilpotent matrix that was 
not principal and had a square root. Is this always the case? That is, are there nilpotent 
matrices of less than maximal rank that are still rootless? With these interesting ques
tions worked out, the reader should try to give a complete description of all rootless 
matrices, and we hope that our remarks will help you on your way. 

REFERENCES 
1 .  C. C. Macduffie, The Theory o f  Matrices, Chelsea Pub!. Co., New York, 1 946. 
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Undoubtedly, many people had called Dr. Harold Smith at 493-7775 without thinking 
much about his phone number. Dr. Smith's brother-in-law, Albert Wilansky, however, 
noticed something very interesting about this phone number. When written as the sin
gle number 4937775, it is a composite number where the sum of the digits in its prime 
factorization is equal to the digit sum of the number. Adding the digits in the number 
and the digits of its prime factors 3, 5, 5 ,  and 65837 resulted in identical sums of 42. 
Wilansky, a mathematics professor at Lehigh University, termed numbers having this 
property to be Smith numbers [5] . It turns out that the terminology was an appropriate 
choice because we will show that Smith numbers are very common, about as common 
as the name Smith in most American phone books. 

The number 4 is the smallest Smith number because it is composite, it has a digit 
sum of 4, and the sum of the digits in its prime factorization is 2 + 2 = 4. In his 
article, Wilansky provided two other slightly larger examples of Smith numbers: 9985 

and 6036. He also told how many Smith numbers lie between 0 and 9999; as you can 
check, there are 376 of them. Because these numbers seemed to occur fairly frequently, 
Wilansky raised the question of whether there are infinitely many Smith numbers . 



224 MATH EMATICS MAGAZ I N E  

In 1987, Wayne McDaniel [3] succeeded i n  showing that infinitely many Smith 
numbers do in fact exist. McDaniel 's approach was through a generalization of the 
problem. He defined a k-Smith number to be a composite integer where the sum of 
the digits in the prime factorization is equal to k times the digit sum of the number. 
In his article, McDaniel produced an infinite sequence of k-Smith numbers for each 
positive integer k. Since k = 1 corresponds to Wilansky's definition of a simple Smith 
number, McDaniel has shown that there are infinitely many Smith numbers. We will 
give further evidence of their abundance by producing yet another infinite sequence of 
Smith numbers. 

Notation and basic theorems For any positive integer n, we let S(n) denote the 
sum of the digits of n and S P (n) denote the sum of the digits of the prime factorization 
of n .  A number is Smith when these two quantities are equal. For example, S(27) = 
2 + 7 = 9 and Sp (27) = Sp (3 * 3 * 3) = 3 + 3 + 3 = 9. Hence 27 is a Smith number. 

For any positive integer n ,  we let N(n) denote the number of digits of n .  For ex
ample, N (27) = 2. An algebraic formula for N (m) is N(m) = [log10 m]  + 1 where 
[ x] is the greatest integer in x .  

A repunit, denoted Rn , i s  a number consisting o f  a string o f  n ones. For example, 
� = 1 1 1 1 . An algebraic formula for Rn is Rn = ( IOn - 1 )/9. 

We now relate a few of the known results about the functions S and SP that are 
pertinent to the construction of our infinite sequence of Smith numbers. In his paper, 
McDaniel [3] stated the following theorem without proof. (A detailed proof of the 
theorem is supplied in [2] .) 

THEOREM 1 .  Ift is a positive integer with t < 9Rn, then S(t * (9Rn)) = S(9Rn) = 
9n. 

This theorem gives a way to know the digit sum of certain large numbers with
out having to expand the number into all its digits. For example, suppose we start with 
9R5 = 99999 and arbitrarily choose t = 44599. Since 44599 < 99999, it follows from 
Theorem 1 that S(44599 * 99999) = 9 * 5 = 45 . We can check by expanding the prod
uct 44599 * 99999. The product gives 4459855401 and in fact S(445985540 1 )  = 45 . 

The following theorem follows directly from the definition of the function S P . 

THEOREM 2 .  Ifm and n are positive integers, then Sp (mn) = Sp (m) + Sp (n) . 

This theorem says that the function Sp is an additive function, a fact we will use 
often. 

In 1983, Keith Wayland and Sham Oltikar [4] provided another useful theorem. 

THEOREM 3 .  If S(u) > Sp (u) and S(u) = Sp (u) (mod 7), then lOku is a Smith 
number where k = (S(u) - Sp (u ) )/7. 

The essence of this theorem is that padding a zero on the end of a number does not 
change its digit sum, but it does increase the digit sum of its primes by 7. Each new 
zero on the end (which is achieved by multiplying by another factor of 10  = 2 * 5) 
adds 2 + 5 = 7 to the Sp (u) value until it equals the S(u) value. Theorem 3 was used 
by Oltikar and Wayland to say that every prime whose digits are all 0 and 1 has some 
multiple that qualifies as a Smith number. For example, some multiple of the prime 
number 10101 1 1 1 1 1  must be a Smith number. (Try multiplying the prime by 6 and 
then apply the Theorem.) Since there are lots of primes containing just Os and 1 s, this 
gave further circumstantial evidence (before McDaniel's  proof) that there are infinitely 
many Smith numbers. 

McDaniel [3] also gave an upper bound for Sp (m) that does not involve the value 
of specific prime factors of m, as follows:  
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THEOREM 4 .  If PI • . . .  , Pr are prime numbers, not necessarily distinct, and if 

m = P1P2 · · · Pn then Sp (m) < 9N(m) - .54r. 

The new infinite sequence With the help of the previous theorems, we begin to 
construct a new infinite sequence of Smith numbers. Start with an integer n greater 
than 7. Let m = 9Rn = 10n - 1 .  By Theorem 4, Sp (m) < 9N(m) - .54r , where r is 
the number of prime factors of m. Since 32 divides m and Rn > 1 ,  m has at least three 
primes in its factorization. This means that r > 2 and .54r > 1 .  Since m has n digits, 
Theorem 4 gives us Sp (m) < 9n - 1 .  But 9n is actually the digit sum of m and so 
Sp (m) < S(m) - 1 .  This implies that 0 < SOOn - 1 ) - Sp ( 1on - 1 ) .  Then let x be 
the least residue of s 0 on - 1 )  - s p 0 on - 1 )  modulo 7 .  

We now show that if  we multiply 1 on - 1 by a power of 1 1  that involves the com
puted least residue x, we get a number where the S and S P values are congruent mod 7 .  
This will be the main ingredient used in generating the new infinite sequence of Smith 
numbers. 

THEOREM 5 .  Let x be the least residue of SOon - 1) - SPOOn - 1) modulo 7. Let 
j be the least residue of 4x modulo 7. Then 

Proof First observe that S( 1 1 j Oon - 1) ) - Sp0 1j 00n - 1) )  = soon - 1) 
S P ( 1 1  j ( 1 on - 1) )  by Theorem 1 and the choice of n � 8 so that 1 1  j < 1 on - 1 .  This 
is equal to 

SOOn - 1 ) - Sp ( 1 1 j ) - SpOOn - 1) by Theorem 2 

= S( 1on - 1 )  - 2j - SpOOn - 1)  by Theorem 2 

= (soon - 1 )  - spoon - 1) )  - 2j 

= x - 2j (mod 7) 

But since 4x = j (mod 7) , 8x = 2j (mod 7) ,  and the expression above is congruent to 
zero. Hence S0 1j 00n - I) ) - Sp ( 1 1 j ( 1on - 1) )  = O(mod 7) . • 

Using Theorems 3 and 5, we can now construct the infinite sequence of Smith 
numbers. Let n be an integer greater than 7. Compute x as the least residue of 
soon - 1) - SPOOn - 1 )  modulo 7. Compute j to be the least residue of 4x mod 7 .  
Then S( l l j ( 1on - 1 )) - SP0 1 j 00n - 1) )  = O(mod 7) by Theorem 5 . So let k = 
(S( 1 1 j 00n - 1) ) - Sp ( 1 1 j 00n - 1) ) )/7.  Then the number an = 10k 

· 1 1 j ( 1on - 1 )  
i s  a Smith number by Theorem 3 .  Since each integer n � 8 gives a Smith number, 
there must be infinitely many Smith numbers. 

Examples We now show the computations needed to produce two specific Smith 
numbers in our infinite sequence. 

EXAMPLE 1 .  Let n = 8 . Then 108 - 1 = 99999999. In this case, S008 - 1) = 
8 * 9 = 72 and SP008 - 1 )  = Sp (3 * 3 * 1 1  * 73 * 101 * 1 37) = 3 1  so that S008 -
1 ) - Sp008 - 1 )  = 72 - 3 1 = 4 1 = 6(mod 7) . Then x = 6 in Theorem S and 4 * 6 = 
3 (mod 7) which gives us j = 3. We let k = (S0 1 \108 - 1 )  - Sp ( 1 1 3008 - 1) ) )/7. 
Then k = (S033099998669) - Sp (3 * 3 * 1 1  * 1 1  * 1 1  * 1 1  * 73 * 101  * 1 37))/7 = 
(72 - 37)/7 = 35/7 = 5 . Finally, 105 * 1 1\108 - 1 )  = 1 3309999866900000 is the 
first Smith number in our sequence. 
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In 1 925 , Lt.-Col. Allan J .  C .  Cunningham and H .  Woodall published a small volume 
of tables of the factorizations of bn ± 1 for the bases b = 2, 3 ,  5, 6, 7, 10,  1 1 ,  1 2 to 
various powers of n .  The authors left blanks in the tables where new factors could be 
entered. They put question marks on numbers of unknown character. Most importantly, 
they gave credit to those who had discovered notable factors in the past. All of these 
techniques stimulated work on the remaining composite numbers in the tables.  The 
ongoing work on the Cunningham-Woodall tables has usually been referred to as the 
Cunningham project. 

Factorizations of bn ± 1 for the bases b = 2, 3, 5, 6,  7, 10, 1 1 ,  12 to various high 
powers n are easily available [1 ] .  In fact, for any value of 10n - 1 ,  n � 8 that has 
been completely factored in the table, we can find the corresponding Smith number 
belonging to our sequence. 

EXAMPLE 2. Let n = 44. The factorization of 1044 - 1 is given [1) as 1044 - 1 = 
32 * 1 1 2 * 23 * 89 * 10 1  * 4093 * 8779 * 2 1 649 * 5 1 3239 * 1052788969 * 1056689261 .  
Adding up the digits in the prime factors, we get Sp ( 1044 - 1 )  = 225 . Since 1 oM -
1 = 9�4• we have that S( loM - 1 )  = 44 * 9 = 396. Then S( loM - 1 )  - Sp ( 1044 -
1 )  = 396 - 225 = 1 7 1  = 3 (mod 7) . So x =  3 in Theorem 5 and 4 * 3 = 5 (mod 7) 
which gives us j = 5 .  

We let k = ((S( 1 1 5 ( 1Q44 - 1 ) - Sp ( 1 1 5 ( 1Q44 - 1 ) ) )/7 = (396 - (225 + 5 * 2)) /7 = 
(396 - 235)/7 = 1 6 1 /7 = 23. Thus the 73-digit number 1023 1 1 5 ( 1 044 - 1 )  is the 
Smith number in our sequence corresponding to n = 44. 

The Smith numbers that McDaniel produces in his infinite sequence have the form 
t ( l On - 1 ) 10"' ,  where t is chosen from the set {2, 3 ,  4, 5 ,  7 ,  8 ,  15 } .  Our Smith numbers 
replace the t value with a power of 1 1  and sometimes alter the m value. When n = 8, 
McDaniel 's procedure gives 8 ( 108 - 1 )  105 ;  when n = 44, it gives 3 ( 1 044 - 1 ) 1024 . Our 
slight change has produced an entirely different infinite sequence of Smith numbers. 
We leave the reader with a challenge. Since there seem to be lots of Smith numbers, 
can you find another infinite sequence of Smiths? (Hint: Look back at Theorem 5 and 
see what role the digit sum of 1 1  played. The key is that 2 is relatively prime to 7 . )  
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Proposa l s  
To be considered for publication, solutions should be received by November 1, 
2002. 

1648. Proposed by Erwin Just (Emeritus) Bronx Community College, New York, NY. 
Prove that there exist an infinite number of integers, none of which is expressible as 

the sum of a prime and a perfect square. 

1649. Proposed by K. R. S. Sastry, Bangalaore, India. 

Prove that if a right triangle has all sides of integral length, then it has at most one 
angle bisector of integral length. 

1650. Proposed by M. N. Deshpande, Nagpur, India. 

Let R(O) denote the rhombus with unit side and and a vertex angle of 0 ,  and let 
n :=: 2 be a positive integer. Prove that a regular 4n-gon of unit side can be tiled with 
the collection of n (2n - 1 )  rhombi consisting of n copies of R ( I )  and 2n copies of 
each of R(�: ) . 1 :::=: k :::=: n - 1 .  

1651. Proposed by Juan-Bosco Romero Marquez, Universidad de Valladolid, Val
ladolid, Spain. 

Prove that for x :=: 2, (x )x-1 (x )x-1 - < r (x) < -
e - - 2 ' 

where r is the gamma function. 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 
succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 
Mathematics, Iowa State University, Ames, lA 5001 1 ,  or mailed electronically (ideally as a IM_EX file) to 
ehj ohnstQiastate . edu. All communications should include the readers name, full address, and an e-mail 
address and/or FAX number. 
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1652. Proposed by Razvan A .  Satnoianu, City University, London, United Kingdom. 

In triangle ABC, let r denote the radius of the inscribed circle, R the radius of the 
circumscribed circle, and p the semiperimeter. Prove the following inequalities, and 
show that in each case the constant on the right is the best possible: 

R p 
(a) - + - > 2. 

p R -

r p 28J3 
(b) - + - ::: -- . 

p r 9 
r p 56 ( R p ) 

(c) - + - :=: - - + - . 
p r 3 1  p R 

Qu ick ies 
Answers to the Quickies are on page 233 . 
Q921. Proposed by Kent Holing, Statoil Research Center, Trondheim, Norway. 

Let m and n be relatively prime positive integers. Show that the numbers � 
and �m + n are not both constructible with straightedge and compass .  

Q922. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, 
Canada. 

Two directly homothetic triangles are such that the incircle of one of them is the 
circumcircle of the other. If the ratio of their areas is 4, prove that the triangles are 
equilateral. 

So l utions  

Tromino Tiles June 2001 
1623. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 

Find the number of ways that k copies of the tromino 

can be placed, with the orientation shown and without overlapping, on a 3 x n rect
angle. 

I. Solution by Stephen Blair, Portland State University, Portland, OR. 
Any configuration of k trominos on a 3 x n rectangle can be described as an 

ordered juxtaposition of four types of column structures.  These types are blank 

columns: -- , pairs of columns containing one tromino: if' or P , and sets of three 

adjacent columns containing two trominos :  . With each of these four column 
sets we associate, as shown, a 2 x 1 block with zero, one, or two squares shaded: 

§-B -· 
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Note that the number of squares shaded in the 2 x 1 block i s  equal to the num
ber of trominos in the associated column structure. For a given configuration of k 
trominos on a 3 x n board, we associate a 2 x (n - k) board on which k squares 
are shaded. This is done by partitioning the k tromino configuration into the four 
types of column structures, then replacing each column structure with its associated 
2 x 1 block. For example, the 3 x 8, four-tromino configuration 

is associated with the 2 x (8 - 4) board 

It is not hard to see that this mapping scheme defines a bijection between the 
configurations of k trominos on the 3 x n board and the set of 2 x (n - k) boards 
with k cells colored. Because there are e(nk-

k)) ways to color k squares on a 2 X 

(n - k) board, there are also e(nk-
k)) ways to place k trominos on a 3 X n board. 

II. Solution by the proposer. 
Imagine that the uncovered squares of the 3 x n rectangle are covered by 1 x 1 

squares, so the 3 x n rectangle is tiled by 3n - 3k pieces 0 and k pieces The 
only tilings that are not concatenations of tilings of smaller rectangles are 

and 

Furthermore, if a tiling is not one of the tilings in ( * }, then it is a concatenation of 
a finite sequence of such tilings.  

Now let an ,k be the number of ways to tile a 3 x n rectangle using k tromino 
pieces and 3n - 3k single square pieces, and let G(t ,  z) = Ln,k?:O an ,k tkzn be the 
generating function for the an ,k o where we set a0, 0 = 1 .  Because the generating 
function for the tilings ( *) is 

P (t ,  z) = z + 2tz2 + t2z3 = z ( l  + tz)2 , 

and any tiling is a concatenation of tilings from ( * ) , it follows that 

Also solved by D. Bednarchak, Agnes Benedek (Argentina), Robert E. Bernstein, Jany C. Binz (Switzerland), 

Tom Boerkoel, Marc Brodie, Knut Dale (Norway), Daniele Donini (Italy), Marty Getz and Dixon Jones, Jerrold 

W. Grossman, Tom Jager; S. C. Locke, Reiner Martin, Carl P. McCarty and Loretta McCarty, Rob P ratt, Les Reid, 

William Tressler; LeRoy Wenstrom, WMC P roblems Group, Michel Woltermann, and Li Zhou. There were two 

incorrect submissions. 

An Ellipsoid Tangent to a Tetrahedron June 2001 
1624. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada. 

An ellipsoid is tangent to each of the six edges of a tetrahedron. Prove that the three 
segments joining the points of tangency of opposite edges are concurrent. 

Solution by Michel Bataille, Rouen, France. 
Under a suitable affine transformation, the ellipsoid becomes a sphere, and concur

rency and tangency are preserved. Thus we need only consider the case in which the 
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ellipsoid is a sphere that is tangent at points R, S ,  T ,  U ,  V ,  and W to sides B C, C A ,  
AB ,  DA, DB ,  and DC, respectively, of tetrahedron A B C D .  Because all segments of 
tangents from a vertex to the point of tangency on the sphere have the same length, 
we can set x = AS = AT  = AU ,  y = B T = B R = B V, z = C R = C S = C W, and 
t = DU = DV = DW .  Denoting by M the vector from the origin to the point M, let 
I be the point determined by 

ml = yztA + ztxB + txyC + xyzD, 

where m = yzt + ztx + txy + xyz .  Then 

ml = zt (yA + xB) + xy(tC + zD) = zt (y + x)T + xy (t + z)W. 

Because zt (y + x) and xy(t + z) are positive and sum to m ,  it follows that I lies on 
segment T W. Similarly, 

ml = yz (tA + xD) + tx (zB + yC) = yz (t + x)V + tx (z + y)R, 

and 

ml = ty (zA + xC) + zx (tB + yD) = ty (z + x)S + zx (t + y)V, 

showing that I lies on segments U R and SV as well . Thus the three segments joining 
points of tangency of opposite edges are concurrent at I .  

Also solved by Daniele Donini (Italy). Ovidiu F urdui, Michael Golomb, Joel Schlosberg, Peter Y. Woo, and 

the proposer. 

A Product of Powers and a Power of Products 

1625. Proposed by Mihaly Bencze, Romania. 
June 2001 

Let x1 , x2 , • • •  , Xn be positive real numbers and let a" a2 , • • •  , an be positive inte
gers . Prove that 

Solution by Robert R. Burnside, University of Paisley, Scotland. 
We prove a more general version of the inequality. Let bk and Yb k = 1 ,  2, . . .  , n ,  

be  fixed positive real numbers, with .L�=l bk = 1 .  For s ::=: 0 ,  define f (s) = fl�=' ( s  + 
yk)bk . Then 

where we have used the weighted arithmetic mean-geometric mean inequality. It fol
lows that f' (s) ::=: 1 and hence that f(x) - f(O) ::=: x for all x ::=: 0. Consequently, 
fl�=l (x + Yk )bk ::=: x + fl�=' y;k , with equality for x nonzero, if and only if YI = Yz = 
. . .  = Yn · 

The inequality in the problem statement is obtained by taking x = 1 ,  Yk = x�fak , and 
bk = ad .L�=I ak . with all ak > 0. If all ak < 0, then the inequality sign is reversed. 

Also solved by Michel Bataille (France), Jean Bogaert (Belgium), Knut Dale (Norway), Minh Can, Daniele 

Donini (Italy). Costas Efthimiou, Ovidiu F urdui, Tom Jager, Reiner Martin, Michael G. Neubauer, Joel Schlos

berg, Heinz-Jiirgen Seiffert (Germany), Beiment Teclezghi and Tewodros Amdeberhan, Xianfu Wang (Canada), 

Li Zhou, and the proposer. 
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A Condition Implying Additivity June 2001 
1626. Proposed by Ho-joo Lee, student, Kwangwoon University, Seoul, South Korea. 

Let f, g, h : lR ---+ lR be functions such that f(g(O)) = g(f(O)) = h(f(O)) = 0 and 

f (x + g(y)) = g (h (f(x))) + y 

for all x ,  y E R Prove that h = f and that g(x + y) = g (x) + g(y) for all x ,  y E JR. 

Solution by Michael K. Kinyon, Western Michigan University, Kalamazoo, MI. 
Setting x = 0 in ( *) gives 

f (g(y)) = g (h (f(O)) )  + y = g (O) + y ,  

for all y .  Setting y = 0 i n  this expression gives 

g(O) = f (g (O)) = 0, 

and it follows that f(g (y)) = y for all y .  Thus f is surjective and is a left inverse of g .  
Setting y = 0 in  ( *) we have 

f(x) = f (x + g(O)) = g (h (f(x))) . 

Because f is surjective, it follows that g is surjective and h is a right inverse of g .  The 
left and right inverses of g must be equal, so we have g- 1 = f = h . Using this in (*) 
we obtain 

f (x + g(y)) = f (x) + y .  

Substituting x = g (u) i n  this last expression, then applying g to both sides yields 

g(u) + g(y) = g (u + y) ,  

for all u ,  y E R Note that the condition g(f(O)) = 0 was not used. 

Also solved by Hamza Ahmad, Claudi Alsina (Spain), Geta Techanie Ayele, S. Floyd Barger, Michel Bataille 

(France), Brian D. Beasley, Anthony C. Blackman and Eduard S. Belinsky (Barbados), Jean Bogaert (Belgium), 

Marc Brodie, Minh Can, Ron Martin Carroll, Con Amore P roblem Group (Denmark), Knut Dale (Norway), 

Richard Daquila, Charles R. Diminnie, Daniele Donini (Italy), Tim Edwards, Costas Efthimiou, Ovidiu F urdui, 

Michel Golomb, Kazuo Goto (Japan), Lee 0. Hagglund, Tracy Dawn Hamilton and Howard B. Hamilton, Damian 

J. Hammock, Brian Hogan, Joel Iiams, Tom Jager, J. Todd Lee and Paula Grafton Young, S. C. Locke, Hieu D. 

Nguyen, Stephen No/tie, Perry and the Masons Solving Group (Spain), Victor Pambuccian, David R. Patten, Sam 

L. Robinson and Gerald Thompson, Richard F. Ryan, Grigor Sargsyan, Joel Schlosberg, Heinz-Jiirgen Seiffert, 

Laishram Shanta Singh and Ritumoni Sarma (India), Shing S. So, Beiment Teclezghi and Tewodros Amdeber

han, Nora S. Thornber, Thomas Vanden Eynden, Gregory P. Wene, LeRoy Wenstrom, Western Maryland College 

P roblems Group, Li Zhou, and the proposer. 

A Generalization of the Arbelos June 2001 
1627. Proposed by Jiro Fukata, Shinsei-cho, Gifu-ken, Japan. 

Semicircle C has diameter AoAn . Semicircles Ct . C2 , . . .  , Cn are drawn so that 
Ck has diameter Ak- t Ak on AoAn . In addition, C1 is internally tangent to C at A0 
and externally tangent to C2 at A t .  Cn is internally tangent to C at An and externally 
tangent to Cn- t  at An- t .  for 2 S k S n - 1 ,  Ck is externally tangent to Ck- t  and Ck+t 
at Ak- l and Ak respectively, and each Cb 1 s k s n is tangent to a chord P Q  of C .  
The case n = 5 i s  illustrated i n  the accompanying figure. 
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(a) Let A 1A'1 and An_ 1 A�_ 1 b e  perpendicular to AoAn at A 1 and An- I . respectively. 
Let circle X be externally tangent to C2 , internally tangent to C and tangent to 
A 1A; on the side opposite C1 , and let circle Y be externally tangent to Cn- I . in
ternally tangent to C and tangent to An- I A�_ 1 on the side opposite Cn . Prove that 
circle X is congruent to circle Y .  

(b) Suppose C0 i s  a semicircle with diameter on AoAn and tangent to P Q.  Let D and 
E be the endpoints of its diameter. Lines D D' and E E' are drawn perpendicular to 
AoAn Let Z be the circle tangent to each of D D' and E E' and internally tangent 
to C. Show that Z is tangent to the circle with radius A 1 An- I · 

Solution by Marty Getz and Dixon Jones, University of Alaska, Fairbanks, AK. 

(a) We show that circles X and Y each have diameter <�o�n- �����n l .  First observe that 
0 n- 1 1 n 

that 

AjAj+l 
Aj_ 1 Aj 

1 - sin e 
l + sin e ' j = 1 ,  2, . . .  , n - 1 ,  

where e is the angle determined by the extended chord P Q and the extended 
d

. A A I . 1 . 
h ! -sin e h 1ameter 0 n . n part1cu ar, w1t a = 1 +sin 11 ,  we ave 

= a . 

Let B be the point at which circle X touches C, and let line An B intersect 
line A 1 A'1 in T .  See Figure 1 .  Let A0B meet X in R and AnB meet X in S. 
Because LA0BAn is a right angle, i t  follows that RS is a diameter of X and is  
parallel to AoAn . In particular, R is the point at  which circle X touches A ,A; .  
Because L TSA 1 = 1 80° - L B RA2 = LA0RA2 and LA 1 TS  = LRA0Az ,  it fol
lows that /::,.T SA 1 '"'"' !::,.A0RA2 • Hence ��� = 1�1� = a .  Furthermore, because 

T 

Figu re 1 Figu re 2 
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RS TR 
= 

T R 1 AoAn- t 
= = 

TR + RA t 1 + a AoAn- t + A tAn 

2 3 3  

Thus, RS = <�o�n- 1��1�" ) . A symmetric argument gives the same result for the 
0 n- 1 1 0 

diameter of Y .  
(b) Figure 2 shows circle Z with diameter RS 1,arallel to AoAn . Let F b e  the inter

section of lines P Q and AoAn . Because A�s 1 = AZ�1 , the intersection G of lines 
A0R and A1 S lies on the line through F and perpendicular to line A0F.  By a sim
ilar argument, the intersection H of lines An- t R and An S also lies on line G F. 
Thus RS and H S lie along two of the altitudes of  !::,RG H .  Because GS is con
current with these two lines, it lies along the third altitude of !::,RG H. Thus, SA 1 
is perpendicular to RAn_ 1 , and it follows that circle Z is tangent to the circle with 
diameter AtAn- l · 

Also solved by Herb Bailey, Michel Bataille (France), Jany C. Binz (Switzerland), Daniele Donini (Italy), Joel 

Schlosberg, and the proposer. 

Answers 
Solutions to the Quickies from page 228. 
A921. It is known that r = � is constructible if and only if r is rational and that 
s = 4m + n is constructible if and only if s is an integer. (See George E. Martin, 
Geometric Constructions, Springer Verlag, 1998.) Furthermore, r is a rational number 
if and only if both m and n are cubes, and s is an integer if and only if m + n is a cube. 

Now assume that r is constructible. Then m = p3 and n = q 3 for integers p and q ,  
and m + n = p3 + q 3 • Thus, by Fermat's Theorem, m + n cannot also be a cube. 
Therefore 4m + n cannot be constructed. 

A922. Let the sides, area, circumradius, and inradius of the larger triangle be a, b, 
c, F, R ,  and r ,  respectively, and let the corresponding sides and area of the smaller 
triangle be a' , b' , c' , and F' . We then have 

a b c 
- = - = - = 2 
a' b' c' ' 

It follows that 

4FR = abc, 

FR abc 
- = -- = 8 , 
F'r a'b'c' 

and 4F'r = a'b'c' . 

and hence that R = 2r . However, it is known that R ::=: 2r with equality if and only if 
the triangle is equilateral. 



R E V I E W S  

PAU L j .  CAMPBELL, Editor 
Beloit  Col lege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Johnson, Valen E.,  An A is an A is an A . . .  and that's the problem, New York Times ( 1 4  April 
2002), Section 4A (Education Life), 14;  http : I lwww . nyt imes . comi2002I041 141 

edlifei 14EDVIEW . html . Special section: The grade inflation problem, The UMAP Journal 1 9  

( 3 )  ( 1 998) 279-336. Johnson, Valen E . ,  A n  alternative to traditional GPA for evaluating student 
performance, Statistical Science 1 2  (4) 25 1-278 ;  ftp : I lftp . isds . duke . edul 

pubiWorkingPapersl96-20 . ps . 

Last week, a statistically sophisticated colleague in another department approached me for help 
in devising a system to keep up with the current level of grade inflation, so that his students 
would not be "penalized" relative to others. Author Johnson (Statistics and Decision Sciences, 
Duke University) was the main proponent of a 1 996 proposal to revise the calculation of grade
point averages (GPAs) at Duke to take into account difficulty of the course, quality of students in 
the course, and the instructor's  grading history. Duke rejected the proposal, but Johnson returns 
here with further data on ramifications-not of grade inflation per se, but of grading inequity, 
which can be a consequence of grade inflation not being uniform among departments or instruc
tors. He examined the effect of grades on student evaluations of courses and instructors and on 
student choice of courses, at Duke. The results were what you might expect: Students are much 
more likely to give low evaluations in courses where they expect lower grades than usual, and 
students are much more likely to enroll with instructors who grade higher. Apart from the con
sequences for retention and advancement of individual faculty (which can be dire), there are 
implications for departments and the institution as a whole. Differences in grading can result 
in-in fact, probably already have at your institution-shifts in enrollments and allocation of re
sources .  If your institution is like Duke (and most others), you as a mathematics instructor have 
a particular problem, since your department grades the lowest (or nearly) .  "Uneven grading 
practices allow students to manipulate their grade point averages and honors status by select
ing certain courses, and discourage them from taking courses that would benefit them [think 
mathematics courses] . By rewarding mediocrity, excellence is discouraged." The Special Sec
tion in The UMAP Journal contains three Outstanding entries in COMAP's 1 998 Mathematical 
Contest in Modeling on the Grade Inflation Problem, along with a commentary by Johnson; his 
article in Statistical Science details the Duke proposal. Watch for his forthcoming book College 

Grading: A National Crisis in Undergraduate Education. 

Primus: Problems, Resources, and Issues in Mathematics Undergraduate Studies. Special Is
sues. The Undergraduate Seminar in Mathematics. Part 1 :  September 200 1 ;  Part 2: December 
200 1 ;  1 1  (3 and 4) 1 93-257, 289-369. 

These special issues of Primus offer 1 1  interpretations of what a seminar in mathematics can 
be about, from presenters at the New Orleans Joint Mathematics Meetings in January 200 1 .  

The ideas and experiences vary i n  level (freshman to senior), focus (communication skills, 
integration of mathematical ideas), faculty role, and grading, but all feature student involvement 
at a fundamentally different level than in other courses. Does your department offer such a 
seminar? Do you need ideas or new ideas? Take a look here for inspiration. 

2 3 4  
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Chown, Marcus, Smash and grab, New Scientist (6 April 2002) 24-28 .  Calude, C.S . ,  and 
B .  Pavlov, Coins, quantum measurements, and Turing's barrier, Quantum Information Process

ing (in press); http : I /www . cs . auckland . ac . nz/CDMTCS/researchreport s/ 

170boris . pdf . 

Will quantum computers really make a difference? Will they make a difference to mathematics? 
Cristian S .  Calude (University of Auckland) thinks that "quantum computing is theoretically ca
pable of computing uncomputable functions." Taking the halting problem as the uncomputable 
function, the key ideas are to superimpose simultaneously an infinite number of quantum states 
(via Hilbert space) and then to detect and measure the probability of a program halting. After 
some finite amount of time, you get an answer: not an absolute yes-or-no answer but an answer 
with an accompanying (tiny) probability (want a larger probability? run the quantum program 
again for longer) . "Because of these new computational models, the idea of 'proof' might . . .  
change." 

Matthews, Robert, $ 1  million mathematical mystery "solved," NewScientist.com news ser
vice; http : I /www . newscientist . com/news/news . j sp? id=ns99992 143 . Matthews, Robert, 
British professor chases solution to $ 1 m  maths prize, Daily Telegraph ( 1 3  April 2002). Dun
woody, Martin, A proof of the Poincare conjecture? (revised version eight, 1 1  April 2002) ;  
http : //www . maths . soton . ac . uk/ mj d/Poin . pdf . 

Martin Dunwoody (Southampton University) claimed to have proved the famous Poincare con
jecture, which states that if every loop on a compact 3-D manifold can be shrunk to a point, the 
manifold is topologically equivalent to a sphere? This is one of the seven Clay Mathematics In
stitute million-dollar mathematical questions. The press (at least in Great Britain) got excited. 
Mathematicians found a gap. (Does this sequence of events sound familiar?) At this writing, 
Dunwoody has added a question mark at the end of the title of his preprint, which is more of a 
blueprint for a proof than a proof itself. Stay tuned, but don't hold your breath. 

Flannery, Sarah, with David Flannery, In Code: A Mathematical Journey, Workman, 200 1 ;  ix + 
341 pp, $24.95 . ISBN 0- 19628- 1 23 84-8. 

High-school student Sarah Flannery invented a new public-key cryptographic algorithm (which 
she calls the Cayley-Purser algorithm) as her project entry in the Irish Young Scientist competi
tion. Her algorithm uses matrices but not modular exponentiation, hence it is 20 to 30 times as 
fast in practice as the RSA algorithm. This book, written in part by her mathematician father, 
details how she came to enter the contest, the fame that winning it brought her, the accompa
nying stress (due to press publicity of the potential of her becoming wealthy from selling her 
idea), and (in an appendix) all the mathematics behind the algorithm. There is enough exposi
tion in the text itself of the elementary aspects of public-key cryptography and of matrices so 
that the reader gets the flavor of the subject and her work. Her tale rambles; but on the whole it 
is inspiring, and the personal nature of the writing may help add to its appeal to young readers. 

Weibel, Ewald R. , Symmorphosis: On Form and Function in Shaping Life, Harvard University 
Press, 2000; xiii + 263 pp, $45 . ISBN 0-674-00068-4. 

''This book addresses a simple question: Are animals designed economically?" The "symmor
phosis" of the title refers to sizing of parts of a system to its function, including providing some 
margin of safety. Author Weibel works out "the quantitative relations between form and func
tion" in various physiological settings: cell, muscle, lung, and circulation. Much of the modeling 
is traditional, but the last page mentions the "Koch tree" as a model of the airway tree and re
marks on its relation to the Mandelbrot set. This book may not interest you as a mathematician 
directly, unless you are involved in mathematical modeling of physiological processes; but, like 
its predecessor D' Arcy Thompson's On Growth and Form, it may inspire biology students to 
study mathematics with you. 

THIS MAGAZINE extends its appreciation to Prof. Campbell on his completing 25 years 
of service as Associate Editor and Reviews Editor. He in tum thanks Assistant Editor Eric 
Rosenthal for prodigious assistance over the years. 
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42nd International Mathematical Olympiad 

Washington, D.C., United States of America 

July 9 and 10, 2001 
edited by Titu Andreescu and Zuming Feng 

Problems 

1 .  Let ABC be an acute-angled triangle with 0 as its circumcenter. Let P on line BC 
b e  the foot of the altitude from A.  Assume that L B C A ::: LAB C + 30° . Prove that 
LCAB + LCOP < 90° . 

2. Prove that 

for all positive real numbers a ,  b, and c. 
3 .  Twenty-one girls and twenty-one boys took part in a mathematical competition. It 

turned out that 
(a) each contestant solved at most six problems, and 
(b) for each pair of a girl and a boy, there was at least one problem that was 

solved by both the girl and the boy. 
Prove that there is a problem that was solved by at least three girls and at least three 
boys. 

4. Let n be an odd integer greater than 1 and let c1 , c2 , • . .  , cn be integers. For each 
permutation a =  (a 1 , a2 , • • .  , an ) of { 1 ,  2, . . .  , n } ,  define S(a) = 2:7=1 c;a; . Prove 
that there exist permutations b and c, b -::/= c, such that n !  divides S(b) - S(c) .  

5 .  In a triangle ABC,  let segment AP  bisect LBAC, with P on side BC, and let 
segment B Q  bisect LABC, with Q on side CA.  It is known that LBAC = 60° and 
that A B + B P = A Q + Q B .  What are the possible angles of triangle ABC? 

6. Let a > b > c > d b e  positive integers and suppose 

ac + bd = (b + d + a  - c) (b + d - a +  c) . 

Prove that ab + cd is not prime. 

Solut ions 

Note: For interested readers, the editors recommend the USA and International Math
ematical Olympiads 2001 . There many of the problems are presented together with a 
collection of remarkable solutions developed by the examination committees, contes
tants, and experts, during or after the contests. 

2 3 6  
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1 .  Let a = L CAB,  f3 = LAB C ,  and y = L B CA .  Let w be the circumcircle of triangle 
ABC, and let R denote the circumradius of triangle ABC .  Also, let M be the 
midpoint of side B C. Because 90° > y > f3 ,  line A P is closer to C than to B . 
Then P is on segment CM. Moreover, since triangle ABC is acute, 0 is inside 
triangle ABC and triangles B O P, COP, OPM are all nondegenerate. Because 
90° > y - f3 � 30° ' 

. 1 
sm(y - {3) � 2 .  ( 1 )  

Note that LCOB = 2LCAB = 2a and LPCO = LBCO = LOBC = ( l SOo 
LCOB)/2 = 90° - LCAB = 90° - a .  It suffices to prove that LCOP  < LPCO ,  
or to proving that 0 P > PC.  

Because LA OC = 2{3 , we have LCA O = 90° - {3.  Note that in  right tri
angle APC,  LCAP = 90° - y ,  so LPAO  = LCAO - LCAP = y - {3 .  By ( 1 ) ,  
sin L P A 0 � 1 /2. Let N be  the foot of  perpendicular from 0 to segment A P .  Then 
M P N O  is a rectangle, so M P jOA  = O N jOA  = sin LPAO  � 1 /2, or 2M P � 
OA = OC.  In right triangles OCM and OPM, OC > CM and O P  > MP.  
Therefore, PC - MP = MC - 2MP :::: MC - OC < MC - MC = 0 .  We ob
tain 0 P > M P > PC, as desired. 

2. By multiplying a ,  b, and c by a suitable factor, we reduce the problem to the case 
when a +  b + c = 1 .  Note that the function f(t) = Jt is convex for t > 0 as 
f" (t) = 4Jts .  Thus, by Jensen 's Inequality, we obtain 

a b c 1 
- + - + - > --;:::.=====7=== 
,;X y'y ,fi - Jax + by +  cz ' 

for all x ,  y ,  z > 0. Setting x = a2 + Sbc, y = b2 + Sea, z = c2 + Sab in the last 
inequality, we obtain 

as 

a b c 1 
--;=::;;==:=::= + + > ---;=:::;;====:=;;:====;;:=:::=::=o= 
Ja2 + Sbc Jb2 + Sea Jc2 + Sab - Ja3 + b3 + c3 + 24abc 

1 > = 1  - J(a + b + c)3 ' 

(a + b + c)3 = a3 + b3 + c3 + 3 L (a2b + b2a) + 6abc 
eye 

� a3 + b3 + c3 + l S� a6b6c6 + 6abc = a3 + b3 + c3 + 24abc. 

3 .  Assign each problem a unique letter, and also number the boys 1 ,  2, . . .  , 2 1  and 
number the girls 1 ,  2, . . . , 2 1 .  Construct a 21  x 21  matrix of letters as follows: in 
the i th row and jth column, write the letter of any problem that both the i th girl 
and the jth boy solved-at least one such problem exists by condition (b) . If we 
consider the i th row, each letter in that row corresponds to a problem that the i th 
girl solved. Since each girl solved at most six problems, each row contains at most 
6 distinct letters. Similarly, each column contains at most 6 distinct letters. 

We have following key observation: In each row (resp. column), consider the let
ters which appear at least three times. At least I 1 squares in the row (resp. column) 
contain one of these letters. Indeed, there are at most 6 different letters, and they 
cannot all appear at most twice, since there are 2 1  > 12  letters total. So at most 5 
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different letters appear at most twice, giving a total of at most 10  squares containing 
letters appearing at most twice. Then at least 1 1  other squares each contain a letter 
that appears at least three times. 

In the matrix, color all the squares which contain letters appearing at least three 
times in the same row (resp. column) in red (resp. blue) . By the above observation, 
each row contains at least 1 1  red squares, so the total number of red squares is 
at least 21 x 1 1 .  Similarly, each column contains at least 1 1  blue squares, so the 
total number of blue squares is at least 21 x 1 1 . Since there are only 2 1  x 2 1  < 
21 x 1 1  + 21  · 1 1  total squares, some square is colored both red and blue. Because 
the letter in this square appears in three different columns and three different rows, 
at least three boys and three girls solved the corresponding problem. Thus, we find 
the problem satisfying the desired property. 

4. Let La denote the sum over all n !  permutations a =  (a� o a2 , • . •  , an ) . We compute 
La S (a) modulo n !  in two ways, one of which assuming that the desired conclusion 
is false, and reach a contradiction. 

Suppose, for the sake of contradiction, that the claim is false. Then each S (a) 
must have a different remainder mod n ! . Since there are exactly n! such permuta
tions a ,  there exists exactly one permutation a such that S (a) = s (mod n ! ) for each 
s = 1 ,  2, . . .  , n ! . Since n > 1 ,  n !  is even and n !  + 1 is odd. Hence, 

or 

n !  n !  
L S (a) = L:s = 2" · (n ! + 1 )  (mod n ! ) ,  
a s= I 

n !  L S (a) = 2 (mod n ! ) . 
a 

( 1 )  

O n  the other hand, for i ,  k E { 1 ,  . . .  , n } ,  w e  have a; = k in exactly (n- 1 ) !  permu
tations a .  Thus, for 1 ::::: i ::::: n ,  

Hence, 

" n + 1  
� a; = (n- 1 ) ! ( 1 + 2 + · · · + n) = n !  · -

2
- . 

a 

n n n ( ) � S (a) = �8 c;a; = 8� c;a; = 8 c; � a; . 

Because n + 1 is even, n !  divides La a; = n !  · n; 1 for each i .  It follows that n !  
divides La S(a) ,  contradicting ( 1 ) .  Therefore, the initial assumption was false, and 
there do exist distinct permutations b and c such that n !  is a divisor of S(b) - S(c) . 

5 .  Let LABC = 2x and LBCA = y .  Then LAB Q = L QBC = x and LCAB + 
LABC + LBCA = 60° + 2x + y = 1 80° , so 

y = 1 20° - 2x . ( 1 )  

Extend segment A B through B to R s o  that B R = B P ,  and construct S o n  ray A Q 
so that AS  = AR .  

We claim that points B ,  P ,  S are collinear. Because B R = B P,  triangle B P R is 
isosceles with base angles 

LBRP = LRPB = ( 1 80° - LPBR)/2 = x = L QBP .  (2) 



VOL. 75 ,  NO. 3 ,  J U N E  2002 2 3 9  

Note that AS = AR and LRAS = LBAC = 60° , implying that triangle ARS is 
equilateral. Since line AP  bisects LRAS, R and S are symmetric with respect to 
line A P. Thus, 

PR = PS 

and LARP = LPSA,  or LBRP = LPSQ. B y  (2), we have 

L QBP  = LBRP = LPSQ .  

(3) 

(4) 

Because A Q  + QS = AB + BR = AB + BP  = A Q  + QB ,  QS = QB .  Hence, 
triangle B Q S is isosceles with 

LBSQ = L QBS. (5) 

Now, assume to the contrary that triangle is BPS  is nondegenerate. Then either 
AC < AS or AC > AS.  In either case, combining (4) and (5) gives LPBS  = 
I L Q B P - L Q B S I = I L P S Q - L B S Q I = L P S B ,  that is, triangle PBS  is isosce
les with P B = P S. By (3), it follows that P B = P S = P R. Hence, triangle B P R 
is equilateral. But then LABC = 1 80° - LC B R = 1 20° , and by ( 1 ), y = oo , which 
is absurd. Therefore, our assumption was wrong and B ,  P, S are collinear. Conse
quently, S = C. 

Since S = C, by ( 1 )  and (5), we obtain x = y = 1 20° - 2x , or x = 40° . There
fore, LABC = 80° , LBCA = 40° , and LCAB = 60° . 

6. Let x = b + d + a - c. It is clear that x > 1 .  We have c = a +  b + d(mod x) and 
d = c - a - b(modx) .  These congruences, combined with the given condition, 
yield 

and 

0 = ac + bd = a (a + b + d) +  bd = (a +  b) (a + d) (mod x) 

0 = ac + bd = ac + b(c - a - b) = (a + b) (c - b) (mod x) .  

Hence, x l l (a + b) (a + d) and x l l (a + b) (c - b) . 
Because a +  b > (a + b) - (c - d) = x and 2x = 2[a + (b - c) + d] > 2a > 

a +  b, a +  b is not divisible by x .  Thus, there is a prime p that divides each of 
x ,  (a + d), and (c - b) . To finish, we only need to prove that p is a proper divisor 
of ab + cd. In fact, ab + cd > a + d :::: p and 

P l l (a + d)b + (c - b)d = ab + cd , 

as desired. 
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